-
Notifications
You must be signed in to change notification settings - Fork 0
/
emit-rtl.c
1633 lines (1364 loc) · 39.4 KB
/
emit-rtl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Emit RTL for the GNU C-Compiler expander.
Copyright (C) 1987, 1988 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* Middle-to-low level generation of rtx code and insns.
This file contains the functions `gen_rtx', `gen_reg_rtx'
and `gen_label_rtx' that are the usual ways of creating rtl
expressions for most purposes.
It also has the functions for creating insns and linking
them in the doubly-linked chain.
The patterns of the insns are created by machine-dependent
routines in insn-emit.c, which is generated automatically from
the machine description. These routines use `gen_rtx' to make
the individual rtx's of the pattern; what is machine dependent
is the kind of rtx's they make and what arguments they use. */
#include "config.h"
#include <stdio.h>
#include "gvarargs.h"
#include "rtl.h"
#include "regs.h"
#include "insn-config.h"
#include "real.h"
#define max(A,B) ((A) > (B) ? (A) : (B))
#define min(A,B) ((A) < (B) ? (A) : (B))
/* This is reset to FIRST_PSEUDO_REGISTER at the start each function.
After rtl generation, it is 1 plus the largest register number used. */
int reg_rtx_no = FIRST_PSEUDO_REGISTER;
/* This is *not* reset after each function. It gives each CODE_LABEL
in the entire compilation a unique label number. */
static int label_num = 1;
/* Value of `label_num' at start of current function. */
static int first_label_num;
/* Nonzero means do not generate NOTEs for source line numbers. */
static int no_line_numbers;
/* Commonly used rtx's, so that we only need space for one copy.
These are initialized once for the entire compilation.
All of these except perhaps fconst0_rtx and dconst0_rtx
are unique; no other rtx-object will be equal to any of these. */
rtx pc_rtx; /* (PC) */
rtx cc0_rtx; /* (CC0) */
rtx cc1_rtx; /* (CC1) (not actually used nowadays) */
rtx const0_rtx; /* (CONST_INT 0) */
rtx const1_rtx; /* (CONST_INT 1) */
rtx fconst0_rtx; /* (CONST_DOUBLE:SF 0) */
rtx dconst0_rtx; /* (CONST_DOUBLE:DF 0) */
/* All references to the following fixed hard registers go through
these unique rtl objects. On machines where the frame-pointer and
arg-pointer are the same register, they use the same unique object.
After register allocation, other rtl objects which used to be pseudo-regs
may be clobbered to refer to the frame-pointer register.
But references that were originally to the frame-pointer can be
distinguished from the others because they contain frame_pointer_rtx.
In an inline procedure, the stack and frame pointer rtxs may not be
used for anything else. */
rtx stack_pointer_rtx; /* (REG:Pmode STACK_POINTER_REGNUM) */
rtx frame_pointer_rtx; /* (REG:Pmode FRAME_POINTER_REGNUM) */
rtx arg_pointer_rtx; /* (REG:Pmode ARG_POINTER_REGNUM) */
rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
/* The ends of the doubly-linked chain of rtl for the current function.
Both are reset to null at the start of rtl generation for the function.
start_sequence saves both of these on `sequence_stack' and then
starts a new, nested sequence of insns. */
static rtx first_insn = NULL;
static rtx last_insn = NULL;
/* Stack of pending (incomplete) sequences saved by `start_sequence'.
This looks like
(INSN_LIST saved-first-insn
(INSN_LIST saved-last-insn ...more saved sequences...)).
The main insn-chain is saved in the last two links of the chain,
unless the chain is empty. */
rtx sequence_stack = 0;
/* INSN_UID for next insn emitted.
Reset to 1 for each function compiled. */
static int cur_insn_uid = 1;
/* Line number and source file of the last line-number NOTE emitted.
This is used to avoid generating duplicates. */
static int last_linenum = 0;
static char *last_filename = 0;
/* A vector indexed by pseudo reg number. The allocated length
of this vector is regno_pointer_flag_length. Since this
vector is needed during the expansion phase when the total
number of registers in the function is not yet known,
it is copied and made bigger when necessary. */
char *regno_pointer_flag;
int regno_pointer_flag_length;
/* Indexed by pseudo register number, gives the rtx for that pseudo.
Allocated in parallel with regno_pointer_flag. */
rtx *regno_reg_rtx;
/* Filename and line number of last line-number note,
whether we actually emitted it or not. */
extern char *emit_filename;
extern int emit_lineno;
rtx change_address ();
/* rtx gen_rtx (code, mode, [element1, ..., elementn])
**
** This routine generates an RTX of the size specified by
** <code>, which is an RTX code. The RTX structure is initialized
** from the arguments <element1> through <elementn>, which are
** interpreted according to the specific RTX type's format. The
** special machine mode associated with the rtx (if any) is specified
** in <mode>.
**
** gen_rtx() can be invoked in a way which resembles the lisp-like
** rtx it will generate. For example, the following rtx structure:
**
** (plus:QI (mem:QI (reg:SI 1))
** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
**
** ...would be generated by the following C code:
**
** gen_rtx (PLUS, QImode,
** gen_rtx (MEM, QImode,
** gen_rtx (REG, SImode, 1)),
** gen_rtx (MEM, QImode,
** gen_rtx (PLUS, SImode,
** gen_rtx (REG, SImode, 2),
** gen_rtx (REG, SImode, 3)))),
*/
/*VARARGS2*/
rtx
gen_rtx (va_alist)
va_dcl
{
va_list p;
enum rtx_code code;
enum machine_mode mode;
register int i; /* Array indices... */
register char *fmt; /* Current rtx's format... */
register rtx rt_val; /* RTX to return to caller... */
va_start (p);
code = va_arg (p, enum rtx_code);
mode = va_arg (p, enum machine_mode);
if (code == CONST_INT)
{
int arg = va_arg (p, int);
if (arg == 0)
return const0_rtx;
if (arg == 1)
return const1_rtx;
rt_val = rtx_alloc (code);
INTVAL (rt_val) = arg;
}
else
{
rt_val = rtx_alloc (code); /* Allocate the storage space. */
rt_val->mode = mode; /* Store the machine mode... */
fmt = GET_RTX_FORMAT (code); /* Find the right format... */
for (i = 0; i < GET_RTX_LENGTH (code); i++)
{
switch (*fmt++)
{
case '0': /* Unused field. */
break;
case 'i': /* An integer? */
XINT (rt_val, i) = va_arg (p, int);
break;
case 's': /* A string? */
XSTR (rt_val, i) = va_arg (p, char *);
break;
case 'e': /* An expression? */
case 'u': /* An insn? Same except when printing. */
XEXP (rt_val, i) = va_arg (p, rtx);
break;
case 'E': /* An RTX vector? */
XVEC (rt_val, i) = va_arg (p, rtvec);
break;
default:
abort();
}
}
}
va_end (p);
return rt_val; /* Return the new RTX... */
}
/* gen_rtvec (n, [rt1, ..., rtn])
**
** This routine creates an rtvec and stores within it the
** pointers to rtx's which are its arguments.
*/
/*VARARGS1*/
rtvec
gen_rtvec (va_alist)
va_dcl
{
int n, i;
va_list p;
rtx *vector;
va_start (p);
n = va_arg (p, int);
if (n == 0)
return NULL_RTVEC; /* Don't allocate an empty rtvec... */
vector = (rtx *) alloca (n * sizeof (rtx));
for (i = 0; i < n; i++)
vector[i] = va_arg (p, rtx);
va_end (p);
return gen_rtvec_v (n, vector);
}
rtvec
gen_rtvec_v (n, argp)
int n;
rtx *argp;
{
register int i;
register rtvec rt_val;
if (n == 0)
return NULL_RTVEC; /* Don't allocate an empty rtvec... */
rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
for (i = 0; i < n; i++)
rt_val->elem[i].rtx = *argp++;
return rt_val;
}
/* Generate a REG rtx for a new pseudo register of mode MODE.
This pseudo is assigned the next sequential register number. */
rtx
gen_reg_rtx (mode)
enum machine_mode mode;
{
register rtx val;
/* Make sure regno_pointer_flag and regno_reg_rtx are large
enough to have an element for this pseudo reg number. */
if (reg_rtx_no == regno_pointer_flag_length)
{
rtx *new1;
char *new =
(char *) oballoc (regno_pointer_flag_length * 2);
bzero (new, regno_pointer_flag_length * 2);
bcopy (regno_pointer_flag, new, regno_pointer_flag_length);
regno_pointer_flag = new;
new1 = (rtx *) oballoc (regno_pointer_flag_length * 2 * sizeof (rtx));
bzero (new1, regno_pointer_flag_length * 2 * sizeof (rtx));
bcopy (regno_reg_rtx, new1, regno_pointer_flag_length * sizeof (rtx));
regno_reg_rtx = new1;
regno_pointer_flag_length *= 2;
}
val = gen_rtx (REG, mode, reg_rtx_no);
regno_reg_rtx[reg_rtx_no++] = val;
return val;
}
/* Identify REG as a probable pointer register. */
void
mark_reg_pointer (reg)
rtx reg;
{
REGNO_POINTER_FLAG (REGNO (reg)) = 1;
}
/* Return 1 plus largest pseudo reg number used in the current function. */
int
max_reg_num ()
{
return reg_rtx_no;
}
/* Return 1 + the largest label number used so far. */
int
max_label_num ()
{
return label_num;
}
/* Return first label number used in this function (if any were used). */
int
get_first_label_num ()
{
return first_label_num;
}
/* Assuming that X is an rtx (MEM, REG or SUBREG) for a fixed-point number,
return a MEM or SUBREG rtx that refers to the least-significant part of X.
MODE specifies how big a part of X to return;
it must not be larger than a word.
If X is a MEM whose address is a QUEUED, the value may be so also. */
rtx
gen_lowpart (mode, x)
enum machine_mode mode;
register rtx x;
{
/* This case loses if X is a subreg. To catch bugs early,
complain if an invalid MODE is used even in other cases. */
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
&& GET_MODE_SIZE (mode) != GET_MODE_UNIT_SIZE (GET_MODE (x)))
abort ();
if (GET_MODE (x) == mode)
return x;
if (GET_CODE (x) == CONST_INT)
return gen_rtx (CONST_INT, VOIDmode, INTVAL (x) & GET_MODE_MASK (mode));
if (GET_CODE (x) == CONST_DOUBLE)
/* In version 1.37, try this: */
/* if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) abort (); */
/* Assume it's an int, so ..._LOW means the low-order word. */
return gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_LOW (x) & GET_MODE_MASK (mode));
if (GET_CODE (x) == MEM)
{
register int offset = 0;
#ifdef WORDS_BIG_ENDIAN
offset = (max (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
- max (GET_MODE_SIZE (mode), UNITS_PER_WORD));
#endif
#ifdef BYTES_BIG_ENDIAN
/* Adjust the address so that the address-after-the-data
is unchanged. */
offset -= (min (UNITS_PER_WORD, GET_MODE_SIZE (mode))
- min (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
#endif
return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
}
else if (GET_CODE (x) == SUBREG)
return (GET_MODE (SUBREG_REG (x)) == mode && SUBREG_WORD (x) == 0
? SUBREG_REG (x)
: gen_rtx (SUBREG, mode, SUBREG_REG (x), SUBREG_WORD (x)));
else if (GET_CODE (x) == REG)
{
#ifdef WORDS_BIG_ENDIAN
if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
{
return gen_rtx (SUBREG, mode, x,
((GET_MODE_SIZE (GET_MODE (x))
- max (GET_MODE_SIZE (mode), UNITS_PER_WORD))
/ UNITS_PER_WORD));
}
#endif
return gen_rtx (SUBREG, mode, x, 0);
}
else
abort ();
}
/* Like `gen_lowpart', but refer to the most significant part. */
rtx
gen_highpart (mode, x)
enum machine_mode mode;
register rtx x;
{
if (GET_CODE (x) == MEM)
{
register int offset = 0;
#ifndef WORDS_BIG_ENDIAN
offset = (max (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
- max (GET_MODE_SIZE (mode), UNITS_PER_WORD));
#endif
#ifndef BYTES_BIG_ENDIAN
if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
offset -= (GET_MODE_SIZE (mode)
- min (UNITS_PER_WORD,
GET_MODE_SIZE (GET_MODE (x))));
#endif
return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
}
else if (GET_CODE (x) == REG)
{
#ifndef WORDS_BIG_ENDIAN
if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
{
return gen_rtx (SUBREG, mode, x,
((GET_MODE_SIZE (GET_MODE (x))
- max (GET_MODE_SIZE (mode), UNITS_PER_WORD))
/ UNITS_PER_WORD));
}
#endif
return gen_rtx (SUBREG, mode, x, 0);
}
else
abort ();
}
/* Return 1 iff X, assumed to be a SUBREG,
refers to the least significant part of its containing reg.
If X is not a SUBREG, always return 1 (it is its own low part!). */
int
subreg_lowpart_p (x)
rtx x;
{
if (GET_CODE (x) != SUBREG)
return 1;
#ifdef WORDS_BIG_ENDIAN
if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
{
register enum machine_mode mode = GET_MODE (SUBREG_REG (x));
return (SUBREG_WORD (x)
== ((GET_MODE_SIZE (GET_MODE (x))
- max (GET_MODE_SIZE (mode), UNITS_PER_WORD))
/ UNITS_PER_WORD));
}
#endif
return SUBREG_WORD (x) == 0;
}
/* Return a memory reference like MEMREF, but with its mode changed
to MODE and its address changed to ADDR.
(VOIDmode means don't change the mode.
NULL for ADDR means don't change the address.) */
rtx
change_address (memref, mode, addr)
rtx memref;
enum machine_mode mode;
rtx addr;
{
rtx new;
if (GET_CODE (memref) != MEM)
abort ();
if (mode == VOIDmode)
mode = GET_MODE (memref);
if (addr == 0)
addr = XEXP (memref, 0);
new = gen_rtx (MEM, mode, memory_address (mode, addr));
MEM_VOLATILE_P (new) = MEM_VOLATILE_P (memref);
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (memref);
MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (memref);
return new;
}
/* Return a newly created CODE_LABEL rtx with a unique label number. */
rtx
gen_label_rtx ()
{
register rtx label = gen_rtx (CODE_LABEL, VOIDmode, 0, 0, 0, label_num++);
LABEL_NUSES (label) = 0;
return label;
}
/* For procedure integration. */
/* Return a newly created INLINE_HEADER rtx. Should allocate this
from a permanent obstack when the opportunity arises. */
rtx
gen_inline_header_rtx (insn, last_insn,
first_labelno, last_labelno,
max_parm_regnum, max_regnum, args_size,
stack_slots)
rtx insn, last_insn;
int first_labelno, last_labelno, max_parm_regnum, max_regnum, args_size;
rtx stack_slots;
{
rtx header = gen_rtx (INLINE_HEADER, VOIDmode,
cur_insn_uid++, NULL,
insn, last_insn,
first_labelno, last_labelno,
max_parm_regnum, max_regnum, args_size, stack_slots);
return header;
}
/* Install new pointers to the first and last insns in the chain.
Used for an inline-procedure after copying the insn chain. */
void
set_new_first_and_last_insn (first, last)
rtx first, last;
{
first_insn = first;
last_insn = last;
}
/* Go through all the RTL insn bodies and copy any invalid shared structure.
It does not work to do this twice, because the mark bits set here
are not cleared afterwards. */
static int unshare_copies = 0; /* Count rtx's that were copied. */
static rtx copy_rtx_if_shared ();
void
unshare_all_rtl (insn)
register rtx insn;
{
extern rtx stack_slot_list;
for (; insn; insn = NEXT_INSN (insn))
if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
|| GET_CODE (insn) == CALL_INSN)
{
PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
}
/* Make sure the addresses of stack slots are not shared
with anything in the insn chain. That could happen if
the stack slot is referenced only by its address. */
copy_rtx_if_shared (stack_slot_list);
}
/* Mark ORIG as in use, and return a copy of it if it was already in use.
Recursively does the same for subexpressions. */
static rtx
copy_rtx_if_shared (orig)
rtx orig;
{
register rtx x = orig;
register int i;
register enum rtx_code code;
register char *format_ptr;
int copied = 0;
if (x == 0)
return 0;
code = GET_CODE (x);
/* These types may be freely shared. */
switch (code)
{
case REG:
case QUEUED:
case CONST_INT:
case CONST_DOUBLE:
case SYMBOL_REF:
case CODE_LABEL:
case PC:
case CC0:
return x;
case INSN:
case JUMP_INSN:
case CALL_INSN:
case NOTE:
case LABEL_REF:
case BARRIER:
/* The chain of insns is not being copied. */
return x;
case MEM:
/* A MEM is allowed to be shared if its address is constant
or is a constant plus one of the special registers. */
if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
return x;
if (GET_CODE (XEXP (x, 0)) == PLUS
&& (XEXP (XEXP (x, 0), 0) == frame_pointer_rtx
|| XEXP (XEXP (x, 0), 0) == arg_pointer_rtx)
&& CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
{
/* This MEM can appear in more than one place,
but its address better not be shared with anything else. */
if (! x->used)
XEXP (x, 0) = copy_rtx_if_shared (XEXP (x, 0));
x->used = 1;
return x;
}
if (XEXP (x, 0) == frame_pointer_rtx
|| XEXP (x, 0) == arg_pointer_rtx)
return x;
}
/* This rtx may not be shared. If it has already been seen,
replace it with a copy of itself. */
if (x->used)
{
register rtx copy;
unshare_copies++;
copy = rtx_alloc (code);
bcopy (x, copy, (sizeof (*copy) - sizeof (copy->fld)
+ sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
x = copy;
copied = 1;
}
x->used = 1;
/* Now scan the subexpressions recursively.
We can store any replaced subexpressions directly into X
since we know X is not shared! Any vectors in X
must be copied if X was copied. */
format_ptr = GET_RTX_FORMAT (code);
for (i = 0; i < GET_RTX_LENGTH (code); i++)
{
switch (*format_ptr++)
{
case 'e':
XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
break;
case 'E':
if (XVEC (x, i) != NULL)
{
register int j;
if (copied)
XVEC (x, i) = gen_rtvec_v (XVECLEN (x, i), &XVECEXP (x, i, 0));
for (j = 0; j < XVECLEN (x, i); j++)
XVECEXP (x, i, j)
= copy_rtx_if_shared (XVECEXP (x, i, j));
}
break;
}
}
return x;
}
/* Copy X if necessary so that it won't be altered by changes in OTHER.
Return X or the rtx for the pseudo reg the value of X was copied into.
OTHER must be valid as a SET_DEST. */
rtx
make_safe_from (x, other)
rtx x, other;
{
while (1)
switch (GET_CODE (other))
{
case SUBREG:
other = SUBREG_REG (other);
break;
case STRICT_LOW_PART:
case SIGN_EXTEND:
case ZERO_EXTEND:
other = XEXP (other, 0);
break;
default:
goto done;
}
done:
if ((GET_CODE (other) == MEM
&& ! CONSTANT_P (x)
&& GET_CODE (x) != CONST_DOUBLE
&& GET_CODE (x) != REG
&& GET_CODE (x) != SUBREG)
|| (GET_CODE (other) == REG
&& (REGNO (other) < FIRST_PSEUDO_REGISTER
|| reg_mentioned_p (other, x))))
{
rtx temp = gen_reg_rtx (GET_MODE (x));
emit_move_insn (temp, x);
return temp;
}
return x;
}
/* Emission of insns (adding them to the doubly-linked list). */
/* Return the first insn of the current sequence or current function. */
rtx
get_insns ()
{
return first_insn;
}
/* Return the last insn emitted in current sequence or current function. */
rtx
get_last_insn ()
{
return last_insn;
}
/* Specify a new insn as the last in the chain. */
void
set_last_insn (insn)
rtx insn;
{
if (NEXT_INSN (insn) != 0)
abort ();
last_insn = insn;
}
/* Return a number larger than any instruction's uid in this function. */
int
get_max_uid ()
{
return cur_insn_uid;
}
rtx
next_insn (insn)
rtx insn;
{
if (insn) return NEXT_INSN (insn);
return 0;
}
rtx
previous_insn (insn)
rtx insn;
{
if (insn) return PREV_INSN (insn);
return 0;
}
/* Make and return an INSN rtx, initializing all its slots.
Store PATTERN in the pattern slots.
PAT_FORMALS is an idea that never really went anywhere. */
static rtx
make_insn_raw (pattern, pat_formals)
rtx pattern;
rtvec pat_formals;
{
register rtx insn;
insn = rtx_alloc(INSN);
INSN_UID(insn) = cur_insn_uid++;
PATTERN (insn) = pattern;
INSN_CODE (insn) = -1;
LOG_LINKS(insn) = NULL;
REG_NOTES(insn) = NULL;
return insn;
}
/* Like `make_insn' but make a JUMP_INSN instead of an insn. */
static rtx
make_jump_insn_raw (pattern, pat_formals)
rtx pattern;
rtvec pat_formals;
{
register rtx insn;
insn = rtx_alloc(JUMP_INSN);
INSN_UID(insn) = cur_insn_uid++;
PATTERN (insn) = pattern;
INSN_CODE (insn) = -1;
LOG_LINKS(insn) = NULL;
REG_NOTES(insn) = NULL;
JUMP_LABEL(insn) = NULL;
return insn;
}
/* Add INSN to the end of the doubly-linked list.
INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
static void
add_insn (insn)
register rtx insn;
{
PREV_INSN (insn) = last_insn;
NEXT_INSN (insn) = 0;
if (NULL != last_insn)
NEXT_INSN (last_insn) = insn;
if (NULL == first_insn)
first_insn = insn;
last_insn = insn;
}
/* Add INSN, an rtx of code INSN, into the doubly-linked list
after insn AFTER. */
static void
add_insn_after (insn, after)
rtx insn, after;
{
NEXT_INSN (insn) = NEXT_INSN (after);
PREV_INSN (insn) = after;
if (NEXT_INSN (insn))
PREV_INSN (NEXT_INSN (insn)) = insn;
else if (last_insn == after)
last_insn = insn;
else
{
rtx stack = sequence_stack;
/* Scan all pending sequences too. */
for (; stack; stack = XEXP (XEXP (stack, 1), 1))
if (after == XEXP (XEXP (stack, 1), 0))
XEXP (XEXP (stack, 1), 0) = insn;
}
NEXT_INSN (after) = insn;
}
/* Delete all insns made since FROM.
FROM becomes the new last instruction. */
void
delete_insns_since (from)
rtx from;
{
if (from == 0)
first_insn = 0;
else
NEXT_INSN (from) = 0;
last_insn = from;
}
/* Move a consecutive bunch of insns to a different place in the chain.
The insns to be moved are those between FROM and TO.
They are moved to a new position after the insn AFTER. */
void
reorder_insns (from, to, after)
rtx from, to, after;
{
/* Splice this bunch out of where it is now. */
if (PREV_INSN (from))
NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
if (NEXT_INSN (to))
PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
if (last_insn == to)
last_insn = PREV_INSN (from);
if (first_insn == from)
first_insn = NEXT_INSN (to);
/* Make the new neighbors point to it and it to them. */
if (NEXT_INSN (after))
{
PREV_INSN (NEXT_INSN (after)) = to;
NEXT_INSN (to) = NEXT_INSN (after);
}
PREV_INSN (from) = after;
NEXT_INSN (after) = from;
if (after == last_insn)
last_insn = to;
}
/* Emit an insn of given code and pattern
at a specified place within the doubly-linked list. */
/* Make an instruction with body PATTERN
and output it before the instruction BEFORE. */
rtx
emit_insn_before (pattern, before)
register rtx pattern, before;
{
register rtx insn;
if (GET_CODE (pattern) == SEQUENCE)
{
register int i;
/* For an empty sequence, emit nothing. */
if (XVEC (pattern, 0))
for (i = 0; i < XVECLEN (pattern, 0); i++)
add_insn_after (XVECEXP (pattern, 0, i), PREV_INSN (before));
return PREV_INSN (before);
}
insn = make_insn_raw (pattern, 0);
PREV_INSN (insn) = PREV_INSN (before);
NEXT_INSN (insn) = before;
if (PREV_INSN (insn))
NEXT_INSN (PREV_INSN (insn)) = insn;
else
first_insn = insn;
PREV_INSN (before) = insn;
return insn;
}
/* Make an instruction with body PATTERN and code JUMP_INSN
and output it before the instruction BEFORE. */
rtx
emit_jump_insn_before (pattern, before)
register rtx pattern, before;
{
register rtx insn = make_jump_insn_raw (pattern, 0);
PREV_INSN (insn) = PREV_INSN (before);
NEXT_INSN (insn) = before;
if (PREV_INSN (insn))
NEXT_INSN (PREV_INSN (insn)) = insn;
else
first_insn = insn;
PREV_INSN (before) = insn;
return insn;
}
/* Make an instruction with body PATTERN and code CALL_INSN
and output it before the instruction BEFORE. */
rtx
emit_call_insn_before (pattern, before)
register rtx pattern, before;
{
rtx insn = emit_insn_before (pattern, before);
PUT_CODE (insn, CALL_INSN);
return insn;
}
/* Make an insn of code INSN with body PATTERN
and output it after the insn AFTER. */
rtx
emit_insn_after (pattern, after)
register rtx pattern, after;
{
if (GET_CODE (pattern) == SEQUENCE)
{
register int i;
/* For an empty sequence, emit nothing. */
if (XVEC (pattern, 0))
for (i = 0; i < XVECLEN (pattern, 0); i++)
{
add_insn_after (XVECEXP (pattern, 0, i), after);
after = NEXT_INSN (after);
}
return after;
}
else