-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathinference.py
132 lines (103 loc) · 4.06 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import cv2
import torch
import numpy as np
import torch.nn as nn
from tqdm import tqdm
from torch.nn import functional as F
class ResBlock(nn.Module):
def __init__(self, num_channel):
super(ResBlock, self).__init__()
self.conv_layer = nn.Sequential(
nn.Conv2d(num_channel, num_channel, 3, 1, 1),
nn.BatchNorm2d(num_channel),
nn.ReLU(inplace=True),
nn.Conv2d(num_channel, num_channel, 3, 1, 1),
nn.BatchNorm2d(num_channel))
self.activation = nn.ReLU(inplace=True)
def forward(self, inputs):
output = self.conv_layer(inputs)
output = self.activation(output + inputs)
return output
class DownBlock(nn.Module):
def __init__(self, in_channel, out_channel):
super(DownBlock, self).__init__()
self.conv_layer = nn.Sequential(
nn.Conv2d(in_channel, out_channel, 3, 2, 1),
nn.BatchNorm2d(out_channel),
nn.ReLU(inplace=True),
nn.Conv2d(out_channel, out_channel, 3, 1, 1),
nn.BatchNorm2d(out_channel),
nn.ReLU(inplace=True))
def forward(self, inputs):
output = self.conv_layer(inputs)
return output
class UpBlock(nn.Module):
def __init__(self, in_channel, out_channel, is_last=False):
super(UpBlock, self).__init__()
self.is_last = is_last
self.conv_layer = nn.Sequential(
nn.Conv2d(in_channel, in_channel, 3, 1, 1),
nn.BatchNorm2d(in_channel),
nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2),
nn.Conv2d(in_channel, out_channel, 3, 1, 1))
self.act = nn.Sequential(
nn.BatchNorm2d(out_channel),
nn.ReLU(inplace=True))
self.last_act = nn.Tanh()
def forward(self, inputs):
output = self.conv_layer(inputs)
if self.is_last:
output = self.last_act(output)
else:
output = self.act(output)
return output
class SimpleGenerator(nn.Module):
def __init__(self, num_channel=32, num_blocks=4):
super(SimpleGenerator, self).__init__()
self.down1 = DownBlock(3, num_channel)
self.down2 = DownBlock(num_channel, num_channel*2)
self.down3 = DownBlock(num_channel*2, num_channel*3)
self.down4 = DownBlock(num_channel*3, num_channel*4)
res_blocks = [ResBlock(num_channel*4)]*num_blocks
self.res_blocks = nn.Sequential(*res_blocks)
self.up1 = UpBlock(num_channel*4, num_channel*3)
self.up2 = UpBlock(num_channel*3, num_channel*2)
self.up3 = UpBlock(num_channel*2, num_channel)
self.up4 = UpBlock(num_channel, 3, is_last=True)
def forward(self, inputs):
down1 = self.down1(inputs)
down2 = self.down2(down1)
down3 = self.down3(down2)
down4 = self.down4(down3)
down4 = self.res_blocks(down4)
up1 = self.up1(down4)
up2 = self.up2(up1+down3)
up3 = self.up3(up2+down2)
up4 = self.up4(up3+down1)
return up4
if __name__ == '__main__':
weight = torch.load('weight.pth', map_location='cpu')
model = SimpleGenerator()
model.load_state_dict(weight)
#torch.save(model.state_dict(), 'weight.pth')
model.eval()
name_list = os.listdir('images')
name_list = [f for f in name_list if '.jpg' in f]
if not os.path.exists('results'):
os.mkdir('results')
for name in tqdm(name_list):
load_path = os.path.join('images', name)
save_path = os.path.join('results', name)
raw_image = cv2.imread(load_path)
image = raw_image/127.5 - 1
image = image.transpose(2, 0, 1)
image = torch.tensor(image).unsqueeze(0)
output = model(image.float())
output = output.squeeze(0).detach().numpy()
output = output.transpose(1, 2, 0)
output = (output + 1) * 127.5
output = np.clip(output, 0, 255).astype(np.uint8)
output = np.concatenate([raw_image, output], axis=1)
cv2.imwrite(save_path, output)