-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestprettytable.py
executable file
·99 lines (85 loc) · 3.98 KB
/
testprettytable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# ____ _ _ _____ _ _
# | _ \ _ __ ___| |_| |_ _ _ |_ _|_ _| |__ | | ___
# | |_) | '__/ _ \ __| __| | | | | |/ _` | '_ \| |/ _ \
# | __/| | | __/ |_| |_| |_| | | | (_| | |_) | | __/
# |_| |_| \___|\__|\__|\__, | |_|\__,_|_.__/|_|\___|
# |___/
# Preamble
grouping_name = 'day'
grouping = rawdf.index.day
notation_intents = set(rawdf.columns) - {"adjust-tetrode", "marker"}
## UNIFIED ENTRY PER ADJUSTMENT ##
## -------------------------------
# If markers are present, fill forward (for later!)
markersPresent = 'marker' in rawdf.columns and not df.marker.isnull().all()
# Add the current marker to each
if markersPresent:
rawdf['marker'] = rawdf.marker.ffill()
# Mark each note by the adjustment it belongs to
rawdf['adjustment'] = rawdf.intent == 'adjust-tetrode'
rawdf['adjustment'] = rawdf.adjustment.cumsum()
def collapse_notes(frame):
adjust_tetrode_portion = frame.loc[frame.intent == 'adjust-tetrode']
notes_portion = frame.loc[frame.intent != 'adjust-tetrode']
id_vars = notes_portion.columns.intersection(['datetime','marker','tetrode','adjustment','intent'])
notes_portion = notes_portion.reset_index().melt(id_vars=id_vars, value_vars=set(notes_portion.columns)-set(id_vars),
var_name='type', value_name='value')
notes_portion = notes_portion.dropna(how='any')
notes = notes_portion.intent + "_" + notes_portion.type + "=>" + notes_portion.value.astype('str')
notes = "\n".join(notes.values.tolist())
adjust_tetrode_portion.loc[:,'notes'] = notes
adjust_tetrode_portion.drop(columns='note',inplace=True)
return adjust_tetrode_portion
# Collapse notes by adjustment
tetrodeAdjustments = (rawdf
.groupby('adjustment')
.apply(collapse_notes)
.dropna(axis=1, how='all')
.reset_index(['adjustment'], drop=True)
.reset_index()
.set_index(['datetime'])
)
tetrodeAdjustments
# Figure out times of the tetrode
#tetrodeAdjustments = rawdf[rawdf.intent=='adjust-tetrode']
#tetrodeAdjustmentTimes = rawdf.index
## ANNOTATE (including the grouping)
## ---------------------------------
# Create the depth
tetrodeAdjustments.loc[:,'depth'] = tetrodeAdjustments.groupby('tetrode').turns.cumsum()
# Label with grouping
tetrodeAdjustments.loc[:, grouping_name] = tetrodeAdjustments.index.day
# Determine the super group, which is the cartesian product of marker and grouping
if markersPresent:
tetrodeAdjustments.loc[:,'supergroup'] = (tetrodeAdjustments[grouping_name].astype('str') + ' - ' + tetrodeAdjustments['marker'].astype('str'))
grouping = tetrodeAdjustments['supergroup']
## PIVOT
## -----
tetrodeAdjustments = (tetrodeAdjustments
.drop(columns=[x for x in tetrodeAdjustments.columns if 'level_' in x])
.reset_index()
.drop(columns=[x for x in tetrodeAdjustments.columns if 'level_' in x])
)
pretty_table = []
grouping = np.unique(grouping, return_inverse=True)[1]
for group, data in tetrodeAdjustments.groupby(grouping):
print(f'Creating table for group = {group}')
assert((data.day == data.day.iloc[0]).all())
# B. Reindex by the ordinal position within group per tetrode
count_ordinal = lambda x : pd.Series(np.arange(len(x))+1, index=x.index)
data = data.sort_values(['tetrode','datetime'])
ordinals = pd.DataFrame(data.groupby('tetrode').apply(count_ordinal))
ordinals.set_index(data.index, inplace=True)
data['ordinal'] = ordinals
#data = data.reset_index().set_index(['day','marker','ordinal'])
# C. PIVOT
data = (data
.pivot_table(index=['day','marker','ordinal'],
columns=['tetrode'],
values=['turns','depth','notes'])
.swaplevel(0,1,axis=1)
.sort_index(axis=1)
.fillna('')
)
pretty_table.append(data)
pretty_table = pd.concat(pretty_table, axis=0)