-
Notifications
You must be signed in to change notification settings - Fork 4
/
DESCRIPTION
100 lines (100 loc) · 3.62 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
Package: ClassifyR
Type: Package
Title: A framework for cross-validated classification problems, with
applications to differential variability and differential
distribution testing
Version: 3.11.6
Date: 2024-12-19
Authors@R:
c(
person(given = "Dario", family = "Strbenac", email = "[email protected]", role = c("aut", "cre")),
person(given = "Ellis", family = "Patrick", role = "aut"),
person(given = "Sourish", family = "Iyengar", role = "aut"),
person(given = "Harry", family = "Robertson", role = "aut"),
person(given = "Andy", family = "Tran", role = "aut"),
person(given = "John", family = "Ormerod", role = "aut"),
person(given = "Graham", family = "Mann", role = "aut"),
person(given = "Jean", family = "Yang", email = "[email protected]", role = "aut")
)
VignetteBuilder: knitr
Encoding: UTF-8
biocViews: Classification, Survival
Depends: R (>= 4.1.0), generics, methods, S4Vectors, MultiAssayExperiment, BiocParallel, survival
Imports: grid, genefilter, utils, dplyr, tidyr, rlang, ranger, ggplot2 (>= 3.0.0), ggpubr, reshape2, ggupset, broom, dcanr
Suggests: limma, edgeR, car, Rmixmod, gridExtra (>= 2.0.0), cowplot,
BiocStyle, pamr, PoiClaClu, knitr, htmltools, gtable,
scales, e1071, rmarkdown, IRanges, robustbase, glmnet, class, randomForestSRC,
MatrixModels, xgboost, data.tree, ggnewscale
Description: The software formalises a framework for classification and survival model evaluation
in R. There are four stages; Data transformation, feature selection, model training,
and prediction. The requirements of variable types and variable order are
fixed, but specialised variables for functions can also be provided.
The framework is wrapped in a driver loop that reproducibly carries out a
number of cross-validation schemes. Functions for differential mean, differential variability,
and differential distribution are included. Additional functions
may be developed by the user, by creating an interface to the framework.
License: GPL-3
Packaged: 2014-10-18 11:16:55 UTC; dario
RoxygenNote: 7.3.2
NeedsCompilation: yes
Collate:
'ROCplot.R'
'available.R'
'classes.R'
'calcPerformance.R'
'constants.R'
'crissCrossValidate.R'
'crossValidate.R'
'data.R'
'distribution.R'
'edgesToHubNetworks.R'
'featureSetSummary.R'
'getLocationsAndScales.R'
'interactorDifferences.R'
'interfaceClassify.R'
'interfaceCoxPH.R'
'interfaceCoxnet.R'
'interfaceDLDA.R'
'interfaceFisherDiscriminant.R'
'interfaceGLM.R'
'interfaceKNN.R'
'interfaceKTSPclassifier.R'
'interfaceMerge.R'
'interfaceMixModels.R'
'interfaceNSC.R'
'interfaceNaiveBayesKernel.R'
'interfacePCA.R'
'interfacePenalisedGLM.R'
'interfacePrevalidation.R'
'interfaceRandomForest.R'
'interfaceRandomForestSurvival.R'
'interfaceSVM.R'
'interfaceXGB.R'
'performancePlot.R'
'plotFeatureClasses.R'
'precisionPathways.R'
'prepareData.R'
'previousSelection.R'
'previousTrained.R'
'randomSelection.R'
'rankingBartlett.R'
'rankingCoxPH.R'
'rankingDMD.R'
'rankingDifferentMeans.R'
'rankingEdgeR.R'
'rankingKolmogorovSmirnov.R'
'rankingKullbackLeibler.R'
'rankingLevene.R'
'rankingLikelihoodRatio.R'
'rankingLimma.R'
'rankingPairsDifferences.R'
'rankingPlot.R'
'runTest.R'
'runTests.R'
'samplesMetricMap.R'
'selectMulti.R'
'selectionPlot.R'
'simpleParams.R'
'subtractFromLocation.R'
'utilities.R'
URL: https://sydneybiox.github.io/ClassifyR/