Skip to content

Latest commit

 

History

History
130 lines (74 loc) · 10.3 KB

File metadata and controls

130 lines (74 loc) · 10.3 KB

NSQ

NSQ

features

  • Distributed : NSQ提供了分布式的,去中心化,且没有单点故障的拓扑结构,稳定的消息传输发布保障,能够具有高容错和HA(高可用)特性。
  • **Scalable易于扩展:**NSQ支持水平扩展,没有中心化的brokers。内置的发现服务简化了在集群中增加节点。同时支持pub-sub和load-balanced 的消息分发。
  • Ops Friendly NSQ非常容易配置和部署,生来就绑定了一个管理界面。二进制包没有运行时依赖。官方有Docker image
  • Integrated高度集成 官方的 Go 和 Python库都有提供。而且为大多数语言提供了库。

组件

nsq 有三个必要的组建nsqd、nsqlookupd、nsqadmin 其中nsqd 和 nsqlookup是必须部署的 下面我们一一介绍。

nsqd

负责接收消息,存储队列和将消息发送给客户端,nsqd 可以多机器部署,当你使用客户端向一个topic发送消息时,可以配置多个nsqd地址,消息会随机的分配到各个nsqd上,nsqd优先把消息存储到内存channel中,当内存channel满了之后,则把消息写到磁盘文件中。他监听了两个tcp端口,一个用来服务客户端,一个用来提供http的接口 ,nsqd 启动时置顶下nsqlookupd地址即可:

nsqd --lookupd-tcp-address=127.0.0.1:4160

也可以指定端口 与数据目录,其他配置项可详见官网

nsqd --lookupd-tcp-address=127.0.0.1:4160 --broadcast-address=127.0.0.1 -tcp-address=127.0.0.1:4154 -http-address="0.0.0.0:4155" --data-path=/data/nsqdata

nsqlookupd

主要负责服务发现 负责nsqd的心跳、状态监测,给客户端、nsqadmin提供nsqd地址与状态。是整个集群的总控室,包括服务发现和节点拓扑信息的管理。nsqlookupd有以下特点:

  1. 唯一性,在集群中的节点只能指向唯一的nsqlookupd服务
  2. 去中心化,即使nsqlookupd崩溃,也会不影响正在运行的nsqd服务
  3. 充当nsqd和naqadmin信息交互的中间件
  4. 提供一个http查询服务,给客户端定时更新nsqd的地址目录

nsqadmin

nsqadmin是一个web管理界面 启动方式如下:

nsqadmin --lookupd-http-address=127.0.0.1:4161

Topic

一个topic就是程序发布消息的一个逻辑键,当程序第一次发布消息时就会创建topic。

Channels

channel与消费者相关,是消费者之间的负载均衡,channel在某种意义上来说是一个“队列”。每当一个发布者发送一条消息到一个topic,消息会被复制到所有消费者连接的channel上,消费者通过这个特殊的channel读取消息,实际上,在消费者第一次订阅时就会创建channel。Channel会将消息进行排列,如果没有消费者读取消息,消息首先会在内存中排队,当量太大时就会被保存到磁盘中。

Message

消息构成了数据流的中坚力量,消费者可以选择结束消息,表明它们正在被正常处理,或者重新将他们排队待到后面再进行处理。每个消息包含传递尝试的次数,当消息传递超过一定的阀值次数时,我们应该放弃这些消息,或者作为额外消息进行处理。

常用工具类

  • nsq_to _file:消费指定的话题(topic)/通道(channel),并写到文件中,有选择的滚动和/或压缩文件。
  • nsq_to _http:消费指定的话题(topic)/通道(channel)和执行 HTTP requests (GET/POST) 到指定的端点。
  • nsq_to _nsq:消费者指定的话题/通道和重发布消息到目的地 nsqd 通过 TCP。

拓扑结构

NSQ推荐通过他们相应的nsqd实例使用协同定位发布者,这意味着即使面对网络分区,消息也会被保存在本地,直到它们被一个消费者读取。更重要的是,发布者不必去发现其他的nsqd节点,他们总是可以向本地实例发布消息。

首先,一个发布者向它的本地nsqd发送消息,要做到这点,首先要先打开一个连接,然后发送一个包含topic和消息主体的发布命令,在这种情况下,我们将消息发布到事件topic上以分散到我们不同的worker中。

事件topic会复制这些消息并且在每一个连接topic的channel上进行排队,在我们的案例中,有三个channel,它们其中之一作为档案channel。消费者会获取这些消息并且上传到S3。

每个channel的消息都会进行排队,直到一个worker把他们消费,如果此队列超出了内存限制,消息将会被写入到磁盘中。Nsqd节点首先会向nsqlookup广播他们的位置信息,一旦它们注册成功,worker将会从nsqlookup服务器节点上发现所有包含事件topic的nsqd节点。

然后每个worker向每个nsqd主机进行订阅操作,用于表明worker已经准备好接受消息了。这里我们不需要一个完整的连通图,但我们必须要保证每个单独的nsqd实例拥有足够的消费者去消费它们的消息,否则channel会被队列堆着。

NSQ消息传递担保

NSQ 保证消息将交付至少一次,虽然消息可能是重复的。消费者应该关注到这一点,删除重复数据或执行idempotent等操作。

这个担保是作为协议和工作流的一部分,工作原理如下(假设客户端成功连接并订阅一个话题):

  • 客户表示已经准备好接收消息
  • NSQ 发送一条消息,并暂时将数据存储在本地(在 re-queue 或 timeout)
  • 客户端回复 FIN(结束)或 REQ(重新排队)分别指示成功或失败。如果客户端没有回复, NSQ 会在设定的时间超时,自动重新排队消息

这确保了消息丢失唯一可能的情况是不正常结束 nsqd 进程。在这种情况下,这是在内存中的任何信息(或任何缓冲未刷新到磁盘)都将丢失。

如何防止消息丢失是最重要的,即使是这个意外情况可以得到缓解。一种解决方案是构成冗余 nsqd对(在不同的主机上)接收消息的相同部分的副本。因为你实现的消费者是幂等的,以两倍时间处理这些消息不会对下游造成影响,并使得系统能够承受任何单一节点故障而不会丢失信息。

消除单点故障

NSQ被设计以分布的方式被使用。nsqd 客户端(通过 TCP )连接到指定话题的所有生产者实例。没有中间人,没有消息代理,也没有单点故障。
这种拓扑结构消除单链,聚合,反馈。相反,你的消费者直接访问所有生产者。从技术上讲,哪个客户端连接到哪个 NSQ 不重要,只要有足够的消费者连接到所有生产者,以满足大量的消息,保证所有东西最终将被处理。对于 nsqlookupd,高可用性是通过运行多个实例来实现。他们不直接相互通信和数据被认为是最终一致。消费者轮询所有的配置的 nsqlookupd 实例和合并 response。失败的,无法访问的,或以其他方式故障的节点不会让系统陷于停顿。

心跳和超时

NSQ 的 TCP 协议是面向 push 的。在建立连接,握手,和订阅后,消费者被放置在一个为 0 的 RDY 状态。当消费者准备好接收消息,它更新的 RDY 状态到准备接收消息的数量。NSQ 客户端库不断在幕后管理,消息控制流的结果。每隔一段时间,nsqd 将发送一个心跳线连接。客户端可以配置心跳之间的间隔,但 nsqd 会期待一个回应在它发送下一个心跳之前。

组合应用级别的心跳和 RDY 状态,避免头阻塞现象,也可能使心跳无用(即,如果消费者是在后面的处理消息流的接收缓冲区中,操作系统将被填满,堵心跳)为了保证进度,所有的网络 IO 时间上限势必与配置的心跳间隔相关联。这意味着,你可以从字面上拔掉之间的网络连接 nsqd 和消费者,它会检测并正确处理错误。当检测到一个致命错误,客户端连接被强制关闭。在传输中的消息会超时而重新排队等待传递到另一个消费者。最后,错误会被记录并累计到各种内部指标。

分布式

因为NSQ没有在守护程序之间共享信息,所以它从一开始就是为了分布式操作而生。个别的机器可以随便宕机随便启动而不会影响到系统的其余部分,消息发布者可以在本地发布,即使面对网络分区。

这种“分布式优先”的设计理念意味着NSQ基本上可以永远不断地扩展,需要更高的吞吐量?那就添加更多的nsqd吧。唯一的共享状态就是保存在lookup节点上,甚至它们不需要全局视图,配置某些nsqd注册到某些lookup节点上这是很简单的配置,唯一关键的地方就是消费者可以通过lookup节点获取所有完整的节点集。清晰的故障事件——NSQ在组件内建立了一套明确关于可能导致故障的的故障权衡机制,这对消息传递和恢复都有意义。虽然它们可能不像Kafka系统那样提供严格的保证级别,但NSQ简单的操作使故障情况非常明显。

no replication

不像其他的队列组件,NSQ并没有提供任何形式的复制和集群,也正是这点让它能够如此简单地运行,但它确实对于一些高保证性高可靠性的消息发布没有足够的保证。我们可以通过降低文件同步的时间来部分避免,只需通过一个标志配置,通过EBS支持我们的队列。但是这样仍然存在一个消息被发布后马上死亡,丢失了有效的写入的情况。

没有严格的顺序

虽然Kafka由一个有序的日志构成,但NSQ不是。消息可以在任何时间以任何顺序进入队列。在我们使用的案例中,这通常没有关系,因为所有的数据都被加上了时间戳,但它并不适合需要严格顺序的情况。

无数据重复删除功能

NSQ对于超时系统,它使用了心跳检测机制去测试消费者是否存活还是死亡。很多原因会导致我们的consumer无法完成心跳检测,所以在consumer中必须有一个单独的步骤确保幂等性。

reference