-
Notifications
You must be signed in to change notification settings - Fork 227
/
Copy pathDenseCNN.py
97 lines (77 loc) · 3.92 KB
/
DenseCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Import useful packages
import tensorflow as tf
from Models.Initialize_Variables.Initialize import *
def DenseCNN(Input, keep_prob):
'''
Args:
Input: The reshaped input EEG signals
keep_prob: The Keep probability of Dropout
Returns:
prediction: Final prediction of DenseNet Model
'''
# Input reshaped EEG signals: shape 4096 --> 64 X 64
x_Reshape = tf.reshape(tensor=Input, shape=[-1, 64, 64, 1])
# First Dense Block
# First Convolutional Layer
W_conv1 = weight_variable([3, 3, 1, 32])
b_conv1 = bias_variable([32])
h_conv1_BN = tf.layers.batch_normalization(x_Reshape, training=True)
h_conv1_Acti = tf.nn.leaky_relu(h_conv1_BN)
h_conv1 = tf.nn.conv2d(h_conv1_Acti, W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1 # 32 feature maps
# Second Convolutional Layer
W_conv2 = weight_variable([3, 3, 33, 64])
b_conv2 = bias_variable([64])
h_conv2_res = tf.concat([h_conv1, x_Reshape], axis=3) # 33 feature maps now == 32 + 1
h_conv2_BN = tf.layers.batch_normalization(h_conv2_res, training=True)
h_conv2_Acti = tf.nn.leaky_relu(h_conv2_BN)
h_conv2 = tf.nn.conv2d(h_conv2_Acti, W_conv2, strides=[1, 1, 1, 1], padding='SAME') + b_conv2 # 64 feature maps
# First Max Pooling Layer: shape 64 X 64 --> 32 X 32
h_pool1 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# Second Dense Block
# Third Convolutional Layer
W_conv3 = weight_variable([3, 3, 64, 128])
b_conv3 = bias_variable([128])
h_conv3_BN = tf.layers.batch_normalization(h_pool1, training=True)
h_conv3_Acti = tf.nn.leaky_relu(h_conv3_BN)
h_conv3 = tf.nn.conv2d(h_conv3_Acti, W_conv3, strides=[1, 1, 1, 1], padding='SAME') + b_conv3 # 128 feature maps
# Fourth Convolutional Layer
W_conv4 = weight_variable([3, 3, 192, 256])
b_conv4 = bias_variable([256])
h_conv4_res = tf.concat([h_conv3, h_pool1], axis=3) # 192 feature maps now == 128 + 64
h_conv4_BN = tf.layers.batch_normalization(h_conv4_res, training=True)
h_conv4_Acti = tf.nn.leaky_relu(h_conv4_BN)
h_conv4 = tf.nn.conv2d(h_conv4_Acti, W_conv4, strides=[1, 1, 1, 1], padding='SAME') + b_conv4 # 256 feature maps
# First Max Pooling Layer: shape 32 X 32 --> 16 X 16
h_pool2 = tf.nn.max_pool(h_conv4, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# Third Dense Block
# Fifth Convolutional Layer
W_conv5 = weight_variable([3, 3, 256, 256])
b_conv5 = bias_variable([256])
h_conv5_BN = tf.layers.batch_normalization(h_pool2, training=True)
h_conv5_Acti = tf.nn.leaky_relu(h_conv5_BN)
h_conv5 = tf.nn.conv2d(h_conv5_Acti, W_conv5, strides=[1, 1, 1, 1], padding='SAME') + b_conv5
# Sixth Convolutional Layer
W_conv6 = weight_variable([3, 3, 512, 512])
b_conv6 = bias_variable([512])
h_conv6_res = tf.concat([h_conv5, h_pool2], axis=3) # 512 feature maps now == 256 + 256
h_conv6_BN = tf.layers.batch_normalization(h_conv6_res, training=True)
h_conv6_Acti = tf.nn.leaky_relu(h_conv6_BN)
h_conv6 = tf.nn.conv2d(h_conv6_Acti, W_conv6, strides=[1, 1, 1, 1], padding='SAME') + b_conv6 # 512 feature maps now == 256 + 256
# Third Max Pooling Layer
h_pool3 = tf.nn.max_pool(h_conv6, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# Flatten Layer
h_pool6_flat = tf.reshape(h_pool3, [-1, 8 * 8 * 512])
# First Fully Connected Layer
W_fc1 = weight_variable([8 * 8 * 512, 512])
b_fc1 = bias_variable([512])
h_fc1 = tf.matmul(h_pool6_flat, W_fc1) + b_fc1
h_fc1_BN = tf.layers.batch_normalization(h_fc1, training=True)
h_fc1_Acti = tf.nn.leaky_relu(h_fc1_BN)
h_fc1_drop = tf.nn.dropout(h_fc1_Acti, keep_prob)
# Second Fully Connected Layer
W_fc2 = weight_variable([512, 4])
b_fc2 = bias_variable([4])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
return prediction