-
Notifications
You must be signed in to change notification settings - Fork 227
/
Copy pathBiLSTM.py
54 lines (41 loc) · 1.94 KB
/
BiLSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Import useful packages
import tensorflow as tf
def BiLSTM(Input, max_time, n_input, lstm_size, keep_prob, weights_1, biases_1, weights_2, biases_2):
'''
Args:
Input: The reshaped input EEG signals
max_time: The unfolded time slice of BiLSTM Model
n_input: The input signal size at one time
rnn_size: The number of LSTM units inside the BiLSTM Model
keep_prob: The Keep probability of Dropout
weights_1: The Weights of first fully-connected layer
biases_1: The biases of first fully-connected layer
weights_2: The Weights of second fully-connected layer
biases_2: The biases of second fully-connected layer
Returns:
FC_2: Final prediction of BiLSTM Model
FC_1: Extracted features from the first fully connected layer
'''
# reshaped Input EEG signals
Input = tf.reshape(Input, [-1, max_time, n_input])
# Forward and Backward LSTM Model (BiLSTM Model)
lstm_fw_cell = tf.contrib.rnn.BasicLSTMCell(num_units=lstm_size)
lstm_bw_cell = tf.contrib.rnn.BasicLSTMCell(num_units=lstm_size)
# Dropout for forward and backward LSTM Model
lstm_fw_drop = tf.contrib.rnn.DropoutWrapper(cell=lstm_fw_cell, input_keep_prob=keep_prob)
lstm_bw_drop = tf.contrib.rnn.DropoutWrapper(cell=lstm_bw_cell, input_keep_prob=keep_prob)
# One layer BiLSTM Model
outputs, _ = tf.compat.v1.nn.bidirectional_dynamic_rnn(lstm_fw_drop, lstm_bw_drop, Input, dtype=tf.float32)
outputs = tf.concat(outputs, 2)
outputs = outputs[:, max_time - 1, :]
# First fully-connected layer
FC_1 = tf.matmul(outputs, weights_1) + biases_1
FC_1 = tf.layers.batch_normalization(FC_1, training=True)
FC_1 = tf.nn.softplus(FC_1)
FC_1 = tf.nn.dropout(FC_1, keep_prob)
# Second fully-connected layer
FC_2 = tf.matmul(FC_1, weights_2) + biases_2
FC_2 = tf.nn.softmax(FC_2)
return FC_2, FC_1