-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmerge_face.py
263 lines (198 loc) · 9.28 KB
/
merge_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import argparse
import os
import cv2
import json
import numpy
from tqdm import tqdm
import tensorflow as tf
import tensorflow.contrib.slim as slim
n = 0
imageSize = 256
croppedSize = 240
zmask = numpy.zeros((1, 128, 128, 1), float)
def image_stats(image):
(l, a, b) = cv2.split(image)
(lMean, lStd) = (l.mean(), l.std())
(aMean, aStd) = (a.mean(), a.std())
(bMean, bStd) = (b.mean(), b.std())
return (lMean, lStd, aMean, aStd, bMean, bStd)
def adjust_avg_color(img_old, img_new):
w, h, c = img_new.shape
for i in range(img_new.shape[-1]):
old_avg = img_old[:, :, i].mean()
new_avg = img_new[:, :, i].mean()
diff_int = (int)(old_avg - new_avg)
for m in range(img_new.shape[0]):
for n in range(img_new.shape[1]):
temp = (img_new[m, n, i] + diff_int)
if temp < 0:
img_new[m, n, i] = 0
elif temp > 255:
img_new[m, n, i] = 255
else:
img_new[m, n, i] = temp
def transfer_avg_color(img_old, img_new):
assert (img_old.shape == img_new.shape)
source = cv2.cvtColor(img_old, cv2.COLOR_BGR2LAB).astype("float32")
target = cv2.cvtColor(img_new, cv2.COLOR_BGR2LAB).astype("float32")
(lMeanSrc, lStdSrc, aMeanSrc, aStdSrc, bMeanSrc, bStdSrc) = image_stats(source)
(lMeanTar, lStdTar, aMeanTar, aStdTar, bMeanTar, bStdTar) = image_stats(target)
(l, a, b) = cv2.split(target)
l -= lMeanTar
a -= aMeanTar
b -= bMeanTar
l = (lStdTar / lStdSrc) * l
a = (aStdTar / aStdSrc) * a
b = (bStdTar / bStdSrc) * b
l += lMeanSrc
a += aMeanSrc
b += bMeanSrc
l = numpy.clip(l, 0, 255)
a = numpy.clip(a, 0, 255)
b = numpy.clip(b, 0, 255)
transfer = cv2.merge([l, a, b])
transfer = cv2.cvtColor(transfer.astype("uint8"), cv2.COLOR_LAB2BGR)
return transfer
def convert_one_image(args, new_face_rgb, new_face_m, sourceFace, image, mat):
image_size = image.shape[1], image.shape[0]
# _,other_face_m = otherautoencoder.predict( [face / 255.0,zmask] )
# new_face_m = numpy.maximum(new_face_m, other_face_m )
new_face_rgb = numpy.clip(new_face_rgb[0] * 255, 0, 255).astype(image.dtype)
new_face_m = numpy.clip(new_face_m[0], 0, 1).astype(float) * numpy.ones(
(new_face_m.shape[0], new_face_m.shape[1], 3))
base_image = numpy.copy(image)
new_image = numpy.copy(image)
transmat = mat * (64 - 16) * 2
transmat[::, 2] += 8 * 2
adjust_avg_color(sourceFace, new_face_rgb)
cv2.warpAffine(new_face_rgb, transmat, image_size, new_image, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC,
cv2.BORDER_TRANSPARENT)
image_mask = numpy.zeros_like(new_image, dtype=float)
cv2.warpAffine(new_face_m, transmat, image_size, image_mask, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC,
cv2.BORDER_TRANSPARENT)
# slightly enlarge the mask area
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
image_mask = cv2.dilate(image_mask, kernel, iterations=1)
if args.seamlessClone:
unitMask = numpy.clip(image_mask * 365, 0, 255).astype(numpy.uint8)
maxregion = numpy.argwhere(unitMask == 255)
if maxregion.size > 0:
miny, minx = maxregion.min(axis=0)[:2]
maxy, maxx = maxregion.max(axis=0)[:2]
lenx = maxx - minx;
leny = maxy - miny;
masky = int(minx + (lenx // 2))
maskx = int(miny + (leny // 2))
new_image = cv2.seamlessClone(new_image.astype(numpy.uint8), base_image.astype(numpy.uint8), unitMask,
(masky, maskx), cv2.NORMAL_CLONE)
image_mask = cv2.GaussianBlur(image_mask, (11, 11), 0)
foreground = cv2.multiply(image_mask, new_image.astype(float))
background = cv2.multiply(1.0 - image_mask, base_image.astype(float))
output = numpy.add(background, foreground)
if args.vision:
cv2.imshow("output", output.astype(numpy.uint8))
if cv2.waitKey(1) == ord('q'):
exit()
return output
def get_faceFun(image, mat):
global n
n += 1
image_size = image.shape[1], image.shape[0]
sourceMat = mat.copy()
sourceMat = sourceMat * (240 + (16 * 2))
sourceMat[:, 2] += 48
face = cv2.warpAffine(image, sourceMat, (240 + (48 + 16) * 2, 240 + (48 + 16) * 2))
sourceFace = face.copy()
sourceFace = cv2.resize(sourceFace, (128, 128), cv2.INTER_CUBIC)
face = cv2.resize(face, (64, 64), cv2.INTER_AREA)
face = numpy.expand_dims(face, 0)
face = face / 255.0
return face, sourceFace
def run(args):
input_dir = args.input_dir
assert os.path.exists(input_dir)
alignments = os.path.join(input_dir, 'alignments.json')
print(alignments)
alignments = json.loads(open(alignments).read())
output_dir = os.path.join(input_dir, args.output_dir)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if args.blurSize % 2 == 0:
args.blurSize += 1
if args.erosionKernelSize > 0:
erosion_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (args.erosionKernelSize, args.erosionKernelSize))
else:
erosion_kernel = None
for e in alignments:
if len(e) < 4:
raise LookupError('This script expects new format json files with face points included.')
sess = tf.Session()
files = os.listdir(args.meta_path)
meta_list = []
for file in files:
if file.endswith('.meta'):
meta_list.append(os.path.join(args.meta_path, file))
if len(meta_list) != 0:
saver = tf.train.import_meta_graph(meta_list[len(meta_list) - 1])
saver.restore(sess, tf.train.latest_checkpoint(args.meta_path))
print("******resotre over!!!!******")
else:
print("******cannot find the meta files!!!!******")
graph = tf.get_default_graph()
input_wrap = graph.get_tensor_by_name("input/input_wrap:0")
if args.direction == 'AtoB':
pre = graph.get_tensor_by_name("decoder_B/decoder_B_pre:0")
pre_mask = graph.get_tensor_by_name("decoder_B/decoder_B_mask:0")
elif args.direction == 'BtoA':
pre = graph.get_tensor_by_name("decoder_A/decoder_A_pre:0")
pre_mask = graph.get_tensor_by_name("decoder_A/decoder_A_mask:0")
print("******get ready to pre!!!!******")
for image_file, face_file, mat, facepoints in tqdm(alignments[args.startframe::args.frameSkip]):
image = cv2.imread(os.path.join(input_dir, image_file))
face_dir = os.path.join(input_dir + '/aligned', image_file)
face = cv2.imread(face_dir)
mat = numpy.array(mat).reshape(2, 3)
if image is None: continue
if face is None: continue
get_face, get_sourceface = get_faceFun(image, mat)
feed_dict = {input_wrap:get_face}
new_face, new_face_m = sess.run([pre, pre_mask], feed_dict=feed_dict)
if args.doublePass:
print("*********************************************************")
# feed the original prediction back into the network for a second round.
new_face_rgb = new_face.reshape((128, 128, 3))
new_face_rgb = cv2.resize(new_face_rgb, (64, 64))
new_face_rgb = numpy.expand_dims(new_face_rgb, 0)
feed_dict = {input_wrap: new_face_rgb}
new_face_rgb, _ = sess.run([pre, pre_mask], feed_dict=feed_dict)
new_image = convert_one_image(args, new_face, new_face_m, get_sourceface, image, mat)
output_file = os.path.join(output_dir, image_file)
cv2.imwrite(str(output_file), new_image)
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--input_dir", type=str, nargs='?', default='./image/image_3')
parser.add_argument("--alignments", type=str, nargs='?', default='alignments.json')
parser.add_argument("--output_dir", type=str, nargs='?', default='merged')
parser.add_argument("--meta_path", type=str, nargs='?', default='./models')
parser.add_argument("--aligned_path", type=str, nargs='?', default='./image/image_3/aligned')
parser.add_argument("--seamlessClone", type=str2bool, nargs='?', const=False, default='False',
help="Attempt to use opencv seamlessClone.")
parser.add_argument("--doublePass", type=str2bool, nargs='?', const=False, default='True',
help="Pass the original prediction output back through for a second pass.")
parser.add_argument('--maskType', type=str, default='FaceHullAndRect',
choices=['FaceHullAndRect', 'FaceHull', 'Rect'],
help="The type of masking to use around the face.")
parser.add_argument("--startframe", type=int, default='0')
parser.add_argument("--frameSkip", type=int, default='1')
parser.add_argument("--blurSize", type=int, default='4')
parser.add_argument("--erosionKernelSize", type=int, default='2')
parser.add_argument("--vision", type=str2bool, nargs='?', const=False, default='False')
parser.add_argument("--direction", type=str, default="AtoB", choices=["AtoB", "BtoA"])
run(parser.parse_args())