From 0a6b90ae1ff384a4ae82e242ab1f50188314b06b Mon Sep 17 00:00:00 2001 From: Charles Zaloom Date: Fri, 9 Aug 2024 18:22:59 -0500 Subject: [PATCH] run complete coco as benchmark --- .../object-detection/benchmark_script.py | 244 +++++++++++------- 1 file changed, 153 insertions(+), 91 deletions(-) diff --git a/integration_tests/benchmarks/object-detection/benchmark_script.py b/integration_tests/benchmarks/object-detection/benchmark_script.py index 57946c205..8332daf18 100644 --- a/integration_tests/benchmarks/object-detection/benchmark_script.py +++ b/integration_tests/benchmarks/object-detection/benchmark_script.py @@ -128,7 +128,7 @@ def ingest_predictions( def run_base_evaluation(dset: Dataset, model: Model): """Run a base evaluation (with no PR curves).""" evaluation = model.evaluate_detection(dset) - evaluation.wait_for_completion(timeout=60) + evaluation.wait_for_completion() return evaluation @@ -174,6 +174,8 @@ def run_benchmarking_analysis( limits_to_test: list[int], results_file: str = "results.json", data_file: str = "data.json", + compute_box: bool = True, + compute_raster: bool = True, ): """Time various function calls and export the results.""" current_directory = Path(os.path.dirname(os.path.realpath(__file__))) @@ -197,14 +199,46 @@ def run_benchmarking_analysis( file_name=filename, file_path=file_path, url=url ) - # iterate through datum limits - try: - for limit in limits_to_test: - dset_box = Dataset.create(name="coco-box") - dset_raster = Dataset.create(name="coco-raster") + from dataclasses import dataclass + + @dataclass + class Dummy: + meta: dict - model_box = Model.create(name="yolo-box") - model_raster = Model.create(name="yolo-raster") + dummy_value = Dummy(meta={"duration": -1, "labels": 0, "annotations": 0}) + + # iterate through datum limits + for limit in limits_to_test: + + gt_box_ingest_time = -1 + pd_box_ingest_time = -1 + gt_bbox_finalization_time = -1 + pd_bbox_finalization_time = -1 + box_deletion_time = -1 + gt_raster_ingest_time = -1 + pd_raster_ingest_time = -1 + gt_raster_finalization_time = -1 + pd_raster_finalization_time = -1 + raster_deletion_time = -1 + + eval_base_box = dummy_value + eval_pr_box = dummy_value + eval_detail_box = dummy_value + eval_base_raster = dummy_value + eval_pr_raster = dummy_value + eval_detail_raster = dummy_value + + if compute_box: + try: + dset_box = Dataset.create(name="coco-box") + model_box = Model.create(name="yolo-box") + except ( + DatasetAlreadyExistsError, + ModelAlreadyExistsError, + ) as e: + client.delete_dataset("coco-box") + client.delete_model("yolo-box") + raise e # gt bbox ingestion gt_box_ingest_time = time_it( @@ -212,9 +246,61 @@ def run_benchmarking_analysis( dataset=dset_box, path=current_directory / Path(gt_box_filename), limit=limit, - chunk_size=5000, + chunk_size=1000, + ) + + # gt bbox finalization + gt_bbox_finalization_time = time_it(dset_box.finalize) + + # pd bbox ingestion + box_datum_uids = [datum.uid for datum in dset_box.get_datums()] + pd_box_ingest_time = time_it( + ingest_predictions, + dataset=dset_box, + model=model_box, + datum_uids=box_datum_uids, + path=current_directory / Path(pd_box_filename), + limit=limit, + chunk_size=1000, + ) + + # pd bbox finalization + pd_bbox_finalization_time = time_it( + model_box.finalize_inferences, dset_box ) + try: + eval_base_box = run_base_evaluation( + dset=dset_box, model=model_box + ) + eval_pr_box = run_pr_curve_evaluation( + dset=dset_box, model=model_box + ) + eval_detail_box = run_detailed_pr_curve_evaluation( + dset=dset_box, model=model_box + ) + except TimeoutError: + raise TimeoutError( + f"Evaluation timed out when processing {limit} datums." + ) + + start = time() + client.delete_dataset(dset_box.name, timeout=30) + client.delete_model(model_box.name, timeout=30) + box_deletion_time = time() - start + + if compute_raster: + try: + dset_raster = Dataset.create(name="coco-raster") + model_raster = Model.create(name="yolo-raster") + except ( + DatasetAlreadyExistsError, + ModelAlreadyExistsError, + ) as e: + client.delete_dataset("coco-raster") + client.delete_model("yolo-raster") + raise e + # gt raster ingestion gt_raster_ingest_time = time_it( ingest_groundtruths, @@ -224,29 +310,13 @@ def run_benchmarking_analysis( chunk_size=100, ) - # gt bbox finalization - gt_bbox_finalization_time = time_it(dset_box.finalize) - # gt raster finalization gt_raster_finalization_time = time_it(dset_raster.finalize) - box_datum_uids = [datum.uid for datum in dset_box.get_datums()] + # pd raster ingestion raster_datum_uids = [ datum.uid for datum in dset_raster.get_datums() ] - - # pd bbox ingestion - pd_box_ingest_time = time_it( - ingest_predictions, - dataset=dset_box, - model=model_box, - datum_uids=box_datum_uids, - path=current_directory / Path(pd_box_filename), - limit=limit, - chunk_size=5000, - ) - - # pd raster ingestion pd_raster_ingest_time = time_it( ingest_predictions, dataset=dset_raster, @@ -257,91 +327,83 @@ def run_benchmarking_analysis( chunk_size=100, ) - # pd bbox finalization - pd_bbox_finalization_time = time_it( - model_box.finalize_inferences, dset_box - ) - # pd raster finalization pd_raster_finalization_time = time_it( model_raster.finalize_inferences, dset_raster ) try: - eval_box = run_base_evaluation(dset=dset_box, model=model_box) - eval_raster = run_base_evaluation( + eval_base_raster = run_base_evaluation( dset=dset_raster, model=model_raster ) + # eval_pr_raster = run_pr_curve_evaluation( + # dset=dset_raster, model=model_raster + # ) + # eval_detail_raster = run_detailed_pr_curve_evaluation( + # dset=dset_raster, model=model_raster + # ) except TimeoutError: raise TimeoutError( f"Evaluation timed out when processing {limit} datums." ) - start = time() - client.delete_dataset(dset_box.name, timeout=30) - client.delete_model(model_box.name, timeout=30) - box_deletion_time = time() - start - start = time() client.delete_dataset(dset_raster.name, timeout=30) client.delete_model(model_raster.name, timeout=30) raster_deletion_time = time() - start - results = { - "box": { - "info": { - "number_of_datums": limit, - "number_of_unique_labels": eval_box.meta["labels"], - "number_of_annotations": eval_box.meta["annotations"], - }, - "ingestion": { - "groundtruth": f"{(gt_box_ingest_time):.1f} seconds", - "prediction": f"{(pd_box_ingest_time):.1f} seconds", - }, - "finalization": { - "dataset": f"{(gt_bbox_finalization_time):.1f} seconds", - "model": f"{(pd_bbox_finalization_time):.1f} seconds", - }, - "evaluation": { - "base": f"{(eval_box.meta['duration']):.1f} seconds", - }, - "deletion": f"{(box_deletion_time):.1f} seconds", + results = { + "box": { + "info": { + "number_of_datums": limit, + "number_of_unique_labels": eval_base_box.meta["labels"], + "number_of_annotations": eval_base_box.meta["annotations"], + }, + "ingestion": { + "groundtruth": f"{(gt_box_ingest_time):.1f} seconds", + "prediction": f"{(pd_box_ingest_time):.1f} seconds", + }, + "finalization": { + "dataset": f"{(gt_bbox_finalization_time):.1f} seconds", + "model": f"{(pd_bbox_finalization_time):.1f} seconds", + }, + "evaluation": { + "base": f"{(eval_base_box.meta['duration']):.1f} seconds", + "base+pr": f"{(eval_pr_box.meta['duration']):.1f} seconds", + "base+pr+detail": f"{(eval_detail_box.meta['duration']):.1f} seconds", }, - "raster": { - "info": { - "number_of_datums": limit, - "number_of_unique_labels": eval_raster.meta["labels"], - "number_of_annotations": eval_raster.meta[ - "annotations" - ], - }, - "ingestion": { - "groundtruth": f"{(gt_raster_ingest_time):.1f} seconds", - "prediction": f"{(pd_raster_ingest_time):.1f} seconds", - }, - "finalization": { - "dataset": f"{(gt_raster_finalization_time):.1f} seconds", - "model": f"{(pd_raster_finalization_time):.1f} seconds", - }, - "evaluation": { - "base": f"{(eval_raster.meta['duration']):.1f} seconds", - }, - "deletion": f"{(raster_deletion_time):.1f} seconds", + "deletion": f"{(box_deletion_time):.1f} seconds", + }, + "raster": { + "info": { + "number_of_datums": limit, + "number_of_unique_labels": eval_base_raster.meta["labels"], + "number_of_annotations": eval_base_raster.meta[ + "annotations" + ], }, - } - write_results_to_file(write_path=write_path, result_dict=results) - except ( - DatasetAlreadyExistsError, - ModelAlreadyExistsError, - ) as e: - try: - client.delete_dataset("coco-box") - client.delete_model("yolo-box") - finally: - client.delete_dataset("coco-raster") - client.delete_model("yolo-raster") - raise e + "ingestion": { + "groundtruth": f"{(gt_raster_ingest_time):.1f} seconds", + "prediction": f"{(pd_raster_ingest_time):.1f} seconds", + }, + "finalization": { + "dataset": f"{(gt_raster_finalization_time):.1f} seconds", + "model": f"{(pd_raster_finalization_time):.1f} seconds", + }, + "evaluation": { + "base": f"{(eval_base_raster.meta['duration']):.1f} seconds", + "base+pr": f"{(eval_pr_raster.meta['duration']):.1f} seconds", + "base+pr+detail": f"{(eval_detail_raster.meta['duration']):.1f} seconds", + }, + "deletion": f"{(raster_deletion_time):.1f} seconds", + }, + } + write_results_to_file(write_path=write_path, result_dict=results) if __name__ == "__main__": - run_benchmarking_analysis(limits_to_test=[12, 12]) + run_benchmarking_analysis( + limits_to_test=[5000, 5000, 5000], + compute_box=True, + compute_raster=False, + )