forked from icoz69/DeepEMD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_pretrain.py
195 lines (167 loc) · 7.74 KB
/
train_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import argparse
import os
import time
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from Models.dataloader.samplers import CategoriesSampler
from Models.models.Network import DeepEMD
from Models.utils import *
from Models.dataloader.data_utils import *
DATA_DIR='your/default/dataset/dir'
# DATA_DIR='/home/zhangchi/dataset'
parser = argparse.ArgumentParser()
# about dataset and network
parser.add_argument('-dataset', type=str, default='miniimagenet', choices=['miniimagenet', 'cub','tieredimagenet','fc100','tieredimagenet_yao','cifar_fs'])
parser.add_argument('-data_dir', type=str, default=DATA_DIR)
# about pre-training
parser.add_argument('-max_epoch', type=int, default=120)
parser.add_argument('-lr', type=float, default=0.1)
parser.add_argument('-step_size', type=int, default=30)
parser.add_argument('-gamma', type=float, default=0.2)
parser.add_argument('-bs', type=int, default=128)
# about validation
parser.add_argument('-set', type=str, default='val', choices=['val', 'test'], help='the set for validation')
parser.add_argument('-way', type=int, default=5)
parser.add_argument('-shot', type=int, default=1)
parser.add_argument('-query', type=int, default=15)
parser.add_argument('-temperature', type=float, default=12.5)
parser.add_argument('-metric', type=str, default='cosine')
parser.add_argument('-num_episode', type=int, default=100)
parser.add_argument('-save_all', action='store_true', help='save models on each epoch')
parser.add_argument('-random_val_task', action='store_true', help='random samples tasks for validation in each epoch')
# about deepemd setting
parser.add_argument('-norm', type=str, default='center', choices=[ 'center'])
parser.add_argument('-deepemd', type=str, default='fcn', choices=['fcn', 'grid', 'sampling'])
parser.add_argument('-feature_pyramid', type=str, default=None)
parser.add_argument('-solver', type=str, default='opencv', choices=['opencv'])
# about training
parser.add_argument('-gpu', default='0,1')
parser.add_argument('-seed', type=int, default=1)
parser.add_argument('-extra_dir', type=str,default=None,help='extra information that is added to checkpoint dir, e.g. hyperparameters')
args = parser.parse_args()
pprint(vars(args))
num_gpu = set_gpu(args)
set_seed(args.seed)
dataset_name = args.dataset
args.save_path = 'pre_train/%s/%d-%.4f-%d-%.2f/' % \
(dataset_name, args.bs, args.lr, args.step_size, args.gamma)
args.save_path = osp.join('checkpoint', args.save_path)
if args.extra_dir is not None:
args.save_path=osp.join(args.save_path,args.extra_dir)
ensure_path(args.save_path)
args.dir = 'pretrained_model/miniimagenet/max_acc.pth'
Dataset=set_up_datasets(args)
trainset = Dataset('train', args)
train_loader = DataLoader(dataset=trainset, batch_size=args.bs, shuffle=True, num_workers=8, pin_memory=True)
valset = Dataset(args.set, args)
val_sampler = CategoriesSampler(valset.label, args.num_episode, args.way, args.shot + args.query)
val_loader = DataLoader(dataset=valset, batch_sampler=val_sampler, num_workers=8, pin_memory=True)
if not args.random_val_task:
print('fix val set for all epochs')
val_loader = [x for x in val_loader]
print('save all checkpoint models:', (args.save_all is True))
model = DeepEMD(args, mode='pre_train')
model = nn.DataParallel(model, list(range(num_gpu)))
model = model.cuda()
# label of query images.
label = torch.arange(args.way, dtype=torch.int8).repeat(args.query) # shape[75]:012340123401234...
label = label.type(torch.LongTensor)
label = label.cuda()
optimizer = torch.optim.SGD([{'params': model.module.encoder.parameters(), 'lr': args.lr},
{'params': model.module.fc.parameters(), 'lr': args.lr}
], momentum=0.9, nesterov=True, weight_decay=0.0005)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
def save_model(name):
torch.save(dict(params=model.module.encoder.state_dict()), osp.join(args.save_path, name + '.pth'))
trlog = {}
trlog['args'] = vars(args)
trlog['train_loss'] = []
trlog['val_loss'] = []
trlog['train_acc'] = []
trlog['val_acc'] = []
trlog['max_acc'] = 0.0
trlog['max_acc_epoch'] = 0
global_count = 0
writer = SummaryWriter(osp.join(args.save_path, 'tf'))
result_list = [args.save_path]
for epoch in range(1, args.max_epoch + 1):
print(args.save_path)
start_time = time.time()
model = model.train()
model.module.mode = 'pre_train'
tl = Averager()
ta = Averager()
#standard classification for pretrain
tqdm_gen = tqdm.tqdm(train_loader)
for i, batch in enumerate(tqdm_gen, 1):
global_count = global_count + 1
data, train_label = [_.cuda() for _ in batch]
logits = model(data)
loss = F.cross_entropy(logits, train_label)
acc = count_acc(logits, train_label)
writer.add_scalar('data/loss', float(loss), global_count)
writer.add_scalar('data/acc', float(acc), global_count)
total_loss = loss
writer.add_scalar('data/total_loss', float(total_loss), global_count)
tqdm_gen.set_description('epo {}, total loss={:.4f} acc={:.4f}'.format(epoch, total_loss.item(), acc))
tl.add(total_loss.item())
ta.add(acc)
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
tl = tl.item()
ta = ta.item()
model = model.eval()
model.module.mode = 'meta'
vl = Averager()
va = Averager()
#use deepemd fcn for validation
with torch.no_grad():
tqdm_gen = tqdm.tqdm(val_loader)
for i, batch in enumerate(tqdm_gen, 1):
data, _ = [_.cuda() for _ in batch]
k = args.way * args.shot
#encoder data by encoder
model.module.mode = 'encoder'
data = model(data)
data_shot, data_query = data[:k], data[k:]
#episode learning
model.module.mode = 'meta'
if args.shot > 1:#k-shot case
data_shot = model.module.get_sfc(data_shot)
logits = model((data_shot.unsqueeze(0).repeat(num_gpu, 1, 1, 1, 1), data_query))#repeat for multi-gpu processing
loss = F.cross_entropy(logits, label)
acc = count_acc(logits, label)
vl.add(loss.item())
va.add(acc)
vl = vl.item()
va = va.item()
writer.add_scalar('data/val_loss', float(vl), epoch)
writer.add_scalar('data/val_acc', float(va), epoch)
tqdm_gen.set_description('epo {}, val, loss={:.4f} acc={:.4f}'.format(epoch, vl, va))
if va >= trlog['max_acc']:
print('A better model is found!!')
trlog['max_acc'] = va
trlog['max_acc_epoch'] = epoch
save_model('max_acc')
torch.save(optimizer.state_dict(), osp.join(args.save_path, 'optimizer_best.pth'))
trlog['train_loss'].append(tl)
trlog['train_acc'].append(ta)
trlog['val_loss'].append(vl)
trlog['val_acc'].append(va)
result_list.append(
'epoch:%03d,training_loss:%.5f,training_acc:%.5f,val_loss:%.5f,val_acc:%.5f' % (epoch, tl, ta, vl, va))
torch.save(trlog, osp.join(args.save_path, 'trlog'))
if args.save_all:
save_model('epoch-%d' % epoch)
torch.save(optimizer.state_dict(), osp.join(args.save_path, 'optimizer_latest.pth'))
print('best epoch {}, best val acc={:.4f}'.format(trlog['max_acc_epoch'], trlog['max_acc']))
print('This epoch takes %d seconds' % (time.time() - start_time),
'\nstill need around %.2f hour to finish' % ((time.time() - start_time) * (args.max_epoch - epoch) / 3600))
lr_scheduler.step()
writer.close()
result_list.append('Val Best Epoch {},\nbest val Acc {:.4f}'.format(trlog['max_acc_epoch'], trlog['max_acc'], ))
save_list_to_txt(os.path.join(args.save_path, 'results.txt'), result_list)