From 4503d46c910ec4b56ade3c6fc3cad8b99e68df3e Mon Sep 17 00:00:00 2001 From: Daniel Baumgartner <30929451+insilentio@users.noreply.github.com> Date: Mon, 15 Jul 2024 10:19:19 +0200 Subject: [PATCH] Delete data_freeze/2_Data directory --- data_freeze/2_Data/.gitignore | 6 - .../2_Data/2_Lookup/lookupDistrict.csv | 35 --- .../2_Data/2_Lookup/lookupDistrict.xlsx | Bin 14880 -> 0 bytes data_freeze/2_Data/3_Parameter/parameter.csv | 202 ------------------ data_freeze/2_Data/3_Parameter/variables.yml | 134 ------------ 5 files changed, 377 deletions(-) delete mode 100644 data_freeze/2_Data/.gitignore delete mode 100644 data_freeze/2_Data/2_Lookup/lookupDistrict.csv delete mode 100644 data_freeze/2_Data/2_Lookup/lookupDistrict.xlsx delete mode 100644 data_freeze/2_Data/3_Parameter/parameter.csv delete mode 100644 data_freeze/2_Data/3_Parameter/variables.yml diff --git a/data_freeze/2_Data/.gitignore b/data_freeze/2_Data/.gitignore deleted file mode 100644 index 668f5194..00000000 --- a/data_freeze/2_Data/.gitignore +++ /dev/null @@ -1,6 +0,0 @@ -1_Input -4_Rates -5_Outputs -6_Log -7_DWH -8_requests \ No newline at end of file diff --git a/data_freeze/2_Data/2_Lookup/lookupDistrict.csv b/data_freeze/2_Data/2_Lookup/lookupDistrict.csv deleted file mode 100644 index 37ecfb60..00000000 --- a/data_freeze/2_Data/2_Lookup/lookupDistrict.csv +++ /dev/null @@ -1,35 +0,0 @@ -QuarCd;QuarLang;distr -011;Rathaus;Kreis 1 -012;Hochschulen;Kreis 1 -013;Lindenhof;Kreis 1 -014;City;Kreis 1 -021;Wollishofen;Wollishofen -023;Leimbach;Leimbach -024;Enge;Enge -031;Alt-Wiedikon;Alt-Wiedikon -033;Friesenberg;Friesenberg -034;Sihlfeld;Sihlfeld -041;Werd;Werd -042;Langstrasse;Langstrasse -044;Hard;Hard -051;Gewerbeschule;Gewerbeschule -052;Escher Wyss;Escher Wyss -061;Unterstrass;Unterstrass -063;Oberstrass;Oberstrass -071;Fluntern;Fluntern -072;Hottingen;Hottingen -073;Hirslanden;Hirslanden -074;Witikon;Witikon -081;Seefeld;Seefeld -082;Mühlebach;Muehlebach -083;Weinegg;Weinegg -091;Albisrieden;Albisrieden -092;Altstetten;Altstetten -101;Höngg;Hoengg -102;Wipkingen;Wipkingen -111;Affoltern;Affoltern -115;Oerlikon;Oerlikon -119;Seebach;Seebach -121;Saatlen;Saatlen -122;Schwamendingen-Mitte;Schwamendingen-Mitte -123;Hirzenbach;Hirzenbach diff --git a/data_freeze/2_Data/2_Lookup/lookupDistrict.xlsx b/data_freeze/2_Data/2_Lookup/lookupDistrict.xlsx deleted file mode 100644 index 94754e94ec7ed17289cf53a7f2311b5bc3040ebc..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 14880 zcmeHu1$!Mkvh6lALyR$F%n&m(Gsetp$IQ&k%p6n9%n&oP9WygCUFV#cduDRxy+3fL z_xE*6yH%^D?kbg3T9TCj0YwFX10Vqa00DrH#dq8a2mk;D0{~C}kicIAtgY+~t?acG zU2F{PG-;eIE%0+efyuK0!0+Y%d;A}M17(VXR^4=nZ7PR6g6+y7IYA{QkT}gaUx@c1 zlAU8!iR*VT$)7#QjO3K6AiGH9EXKc(UU6cSFOjP8^KMztJgUhM>%bI6l-pi#y@+NB z`R11?N7O`zF=u1Iot=SC*Fi`&F6q&j5xx0ZULgVCb62B#%jX&!21fbLmxcGo!)!D!Cds;GC+e&+C< zj1E`ImYJ<~YBJl7g1JhuyE7AqywLkAmpCi)ySa5uXWjmR(I#3$N9py=r>_7kBlB99n*rGpFy zQ4z}zM8vDj^Lc1_g)`!CfZ%qMsVoc`m4m3>sXQ?0@v8#_C8=$q@Yk}9UL?oao7vkG z5pfrC$F?ZS(#GN(iNQ4@;pq#(D#URb6)Y%}0-Qi}t`r~jA5vGnJi%;|$5Sb219p1Gixutz76dmBSV{^eY^IfZnYQeNF4_hbomYZs z9VjpE)Y9n#@`Oyt_YC7A{Uq5pUh1_>7sDAYy(~~Yr32@KzF~O9tM4A`??&Ro9iMdd z{zjVLjRXq-3FK@+`=^~aS=*ZHSzDX`@@D_E8K8HU_Kxy@`zVu_lIVT!(qUeM=$z6V z(U2DHX$g;&ju0RRYblmV2^c-E*RUy@HC5*%XhEz4UCu`P9q*XoH$hNtx;_<$B7?f3 zSe$WyS&v?gflz;RU0YgDPK0GQtfq_r8LuulU9iYlYW!=3eC&3KLD=P??-=y<8t5Hh6emp3ZtF3CV}N!@GM^!yvZv}C^1er7r^BH z48f=SE}>h<%hqQjDVH(xuDnOs9h_2$k0s1p?t%9BK?5RqUKFu*JGm(>N@pAP{7*v^ z9m|(g!`Ej<+k^eHYwutB?<#YL*M|3NWOD}s03f`VcvqQ!RhE2(uE^>4_d|4nka%Vp zTcW5mW6*c%TkNj`Hhfwj&+I@N5uy*VyjbtfwdK#7lO%+L9MykYv)9H_TB@J7fTB(o zG3Lw=!6ra0NpQoxrG2_4otVys&Kk73PGf0Q%x|BA8rA5}ctpmE|fsh80tBx1_p2LHU&2iWNiA>TQ)@`6FdY28t5v zql=t1vWOT%eEN6sZ|Az%8GOs0-lRWsSryiw)A(Jf7}~SHv904lE!WLwDAuNq?A0WT zJkU~{QhloQmws?V*7Yxn2y;m%)+Ix`QFp1u;#|cz3F*l?exudqx|K2%#l3~lrWf8rGlD!5KcXd4I|cyFD1sZ{yo*X#Er<&s>zl{XW>W{{q` zXOE8ec%4V(o^Y{fi#h!m?G|LK{eZ8_4;wH%Uik!{!|@n%u!^}JYWrMFAb?Qr2gX|S zEx)rOOl#eQlZqGWQUIg-$12(6Le0Z3RrtHIh_YJOKfL!DX5at->YvJDXQFFsXrN$k zYiea|_p5ucR~oijrbBG~u+Ib8%5nM06SW$+r`SB3-ggely|AFJ7E-ABr;@^5kLw{d zk8(3N=mdkv=qYT_FhRn~i<#sl3TI9Y40Gc_DX7JUc(UK(56fmj2*XWpzMsAFeV-ii7T4)e)f&?-B#@Gn)*hn&^|; z_CmfR;KDRJKpfWE6kb%f9_hsfr?(U5%fmGea|`Fkj1bE+pjMZD3o2ZWayH~4O}UPJ z@Z%jLpA$>^WRw))H;!#$^rqpR%fVO4O+pLpw>faV{Lv%4PepThu+2xe5CTvU#7yWD zvSx53U&%v=#BjtmMUnesSrbqDW1T;RG{myTXrdgLQ??Y!n`04(Ycqahj#Ga>CG|Gp zdz#m2hZJr5YGuZqx_I7r$3w1I!kh_>@Db~g1VU^}alpNWKI8pIRpGE?km!29!~d=> zM1QKvuYSeO#L&>*?jK(1j|~0)`Xv9TuF!5eRG~YNR{>|YxVZpW0Ro;&uLGb->{9~W2k1DfdjVnKbTaWyDd?7@Kv!M{zQeM=8V>z zrfE+Fk(L$@>5o=LgQ*ITBYwf?@$6l!iiG+W&Aq!Q7UDuT_z;FYQC4DRd8rLiODkP> zMz!ss;>XS4C>-mDe#QdO7Yd#ulx^oh!;VAaru+t;cudben1J0S{VeIWl~8 z3-zCj#edHMFZSI~0)1Kro^;jqX3hz-N=*Y7bNjpbHz{bg21(1_frwq9z^Yb8eJeN z-?8BSTtKbX!;t54eK`5l?t1NTG1ZpLF2cIwPh#2NnzPByidh3CW@LFcXCrIY4F7>V z1%C+nr(;rbOOhkc>ptNU5>jLp$PG%n-;xz^uX~Zku0FZ&GjQ4#XuFge77@_*gECIB zN&1Bd(PKNa|U5d+YvWXM^&~XQS9xD{ZZ4tYdQ#08Ga}|9TrMn_X}!R; zd>Ecq!9D39yTX2@Tdgm|^3Yv>CEY81tQFb0zU!`|k>?V#{p3}7&i+{8+7c*<*`^oJ z;BGxpyz>JF)u4yH#Q;SiG1#&RJ+Fld7r+ZlflU0h*EX`q1oi=&P+XYe>+JxQZ*N+j z|5x&g8A?BK+}Gi(qRe=a33y?3%R!jr^9aJh{*A5p5uxQ5)Usx*?S~p;GK8#5&gYx$ z$-KBAo;}M?3c_ul$Wsn(v|i6=wbwjOpC5+rXz{!#$lD7ajWfX3qs$*X-v5>erw}}}!jwph` zbwbG@`m#(Q9uBzsU>B{T$A~GsknQ4^E0~QbU1_t;;uu_2;N%2J|J*F|gJR2qGM%IM zfKbn2FgiS3kdji9fWFtzln65CvwMx#@&SX{kplu=iYNwpu=)T3J@ZdzOlr_jOVS|n z!sed4=wJ(Cgv0~Y{+lLm(Q!IMX)j;4hS{b}ey_T0ZLoleUubvTa%imAdKl4 zE=LSu^2{%6al}(qS?2%nX>Y!~h|MRP6vWw7$Ae-b?J1l{U6IO|y<3v>XuL)M&ZRgj?~r zP-VHF{Ol@XR(B;!i~(hY%9yf(%_L1$Cz;2ZiDuuCO#S>5tw^D$;fR>JTpSM}$o4Rg zl#%59GVS}!m{6IpM(>c!DF};deMp<-CwkeeTKHCi6sqV`8&)WepEl?-1x{_6)`jfB z`;GKtj6hy3;|()yCj~f%a4H1J6#SAQ)7j&DEma)7GT@lxuyPxf%<&=L)NQGw6TGn5 zAe%7_I5Re@CVDCoL}iS>XP>7it9FzeS|cPfF9LUaAWB7MAZg~aAmt~o6^lbiLk4YS zneC23`CN_EMWa19nduD~s_@7vvc)G5u}8^r=k4odb|nN?927UyA=Easj;~KheTX!& z_4U|OyF31-?kbHksyD`@C^VMpNblhl*ZQL*SrAS+#lF-MgtoS#Zi-!0@rdf{kFqB$ z6kp+TlaXvvOzWY_nd8=(e8)%_;8Bz=^p5g9$WpRZ$K4>;q8eps#8QU>ad(HEoHeP+ zNlnD4kLkd)#p{&uHdoPvs@H~l11T1rh)rad%!Hh5Vez#qPiP%m0n9v9N~xY5+p}%r z-wvD(3nI_vOFcT&4;;)9bo7wqG;V5+5`l08Ck;Iha)(%Gv^HnemILU+h9x!2;?cf3 zT*#NJ(P*XTv}%9F1 zljgei^{hcv?5W%aLlf&*q-1VYFW+KjA8ns^iKf-h-b-=cZU@{^YPER15C8u@-n;d@ z=&5}VlUDKq0C0c0Fgtq}3&TGKdLtUkR$HGDJ!mJq5J9geCs*o$m%|pSLc!|8z+$x~ zSkwwFnVT_UTOH)DWgZvC7aE>bgW{=T+ovLN(7R66LtUI%jadaEdrv%6`(rNA3|*2* zJ!TsxmB2{&*x}+_v|k=3%^j3TXrB!ZMNEAk4;hDM5&X_Nj&}O&{6C^YqCxW#yJ%~o z_FXDZU+Vbi@pOnKk^8KTOi|s!G>+`5w~s{gjDF2yos!hFHm|}XH4Cx9h9JbR%Hk?d zEXR*X@`5cp^lH% zORoJ9=_kFSL6H+JsHiJjC%SUF|vU zkj=Kp1~E*6%!a$%v7tE5H!PXsw-_UiYcg-up40apcSPvh6#_; z=ut9{*()70%;vE#&v4vwIn6}4-f1G19HVx1oWn;NKN7A0!ev9y7>k!Q)!k4AXBBp9 ztt6}7uEEx5_E=7I$BiGb@D234Dok(@-k2zt>Il!8lu3}df}%eP%VmgD!5G6eGVb%G zQpqMd+vF%_;bkR7Ga?V{8%mO_aa^3Z?DAlfhE%IR%%Z?uGC>z5_qhu)C^35opH#76 z#d%^HvC@ZBvH}iW^2X43`vsh4IHzNdKEs*0o=?;5XZU$x;c<)3CQFr4n6L;{|4;}; zq#d|Ui#%%9%v(8e)Ldq;NW*ZEcd<{FoWzoPGHan{JYlf$_Az%@sfQA@Z;@zrRRKpw z+-H@Zr`MPc%Ho^;?4Y<6i)EftgyDA^pAWGZ){0MAd!to za|tYn*dOJ@KVQI&DUn-?j+OrNucd{}n$XS)dnHWpSVcpORyCz+B;S{x#G{3>$>m{w z?8gN|Zhl(+Mqn1sj2fJNUSal7UNTd;-oU%rEO0L_srN`Ucb4jqwf_9HGxkqrRgivU z`{AW-3FgPuVdgioA`sZ$n@=Lkoh)BJ=IAVP( z%~@gcb!qkIeAHwyKbJuyKxh&qa;IbT@ERx~jL(`&Ay(R22`%u<+o zxBK7}Fc_E%x0rZd(7h_eJqB7dWLCqqHQqknF|kEd!!?52Q=6-|X8tXLCutv^j!J74 zglH%G4L!G%EAjFAXINfPOjwH`} zz;k~jN!5V*DsCgDh73WY-$n${EZs@_G#Ck2O-Rg0E2TydyMzBpn1KWJJ(Yw1iN9KW z06K;WLXAE)hF>|@fP5e{x(vCRpLm$>m2xV!BeeDvqEz%~h(KO{xX=(O;ak?`9mP0p z7Uj|6D|<=A5g}RWcZVyFG_uQVpS&4JlSMQI@2)+Bb;Flxno_DMDtDmGdmP}3nYh>& zS8y4us)tS;$%hnL?)hD%a|-Wvv%?_-afv23S07i}dlgekknsj3jIJ=?1>1!?KPC9_ z)xe$6!{Qz}I`>t-g_T~42q3>>+s_!hiaM->3_6JEW8fgbBp4~OsIVnhdwzVGC7m`u z^g8j~(nn#J6m?nwk=cM-E#|?)$STYMs_t-*JhRO{AQ138ZtU=q5IdNErUX!k0N3xh zN+@Jr;IKbWEh^Qeu=n7hcOjuCR=<;u0f&!*W+c8#UrL)pu~S0`&u(X+N2&K3;b17m zMPb$J%&d17r@GHng5`n#x(Q|j3bp`W)q0fXTcMpR`{JAx1OmZNN-I}v(^~VzcT6i+ zw$GWi0j#Z6Fh~C4q7OZsmIOK?tJUGFH2T-R7A5XGvSMk!=iv1WbAot+A=ye%<-u0) zP0b&u_9^r@0K@(BX&4cQ82X4Bwp3zWExV09U>s5;f0t0Lw^77a%Pfj06U`at)+<(D zn)|I1;dLO%E{to;@=(|@6=h62b9Sh)^Knz8_8FoLKY|MEFpPTwRl#g0u5{`rXz4-- z+jf>TtAXxmMI_dXdhBAXk4LfDLLuZwng-Cu4DHO?do;NiH<0DI0 z#X9!{{_*qH>o~*5H_NaaH7f=rky+>r5)iF)YsPHN5PlxL_EOr~1X`-=ek#j13{W7lK(V@OM{3R-n6)|88Jr387E1f;xuS%2j>G`02`^+%YB*nSw@2s|Jhw9VY z^UL$gyJURk`em|n<>-!|)TLTg(MkndacC+(BW zlpJN6LhG!HcHKxzz{QV4tE06&=Ms9HHX;O)?GZ!rFWSIEh<`?)wO9WG&>&@v%l=k_fE=A*i>q{wXY zk7vZ>G?QxyYOWBSaf9wxBb_drcxS%&`T0~@cca8v)R^@JL0myMVFlJOY4CTYkwF>< z&SmYNh;+)aH%gzSJ=mkQ3fR@u7{Z{F1U4s|=`n-?WruT41hu$KlwOVKb%P|v1XUK! zFL5?UfKWGKL$ra4WEiY?Mvc-+7@P9#On%r&ZeenT4yv|O zm5gm8Pv)dd(vO;4lar=SeO5BI9XyzTJxm5?c11;rF#9Fq?_g5sAUTc2Wp+bXks&mj zqCv>P#K=*Y67g}CtT}K&F=LRVQGl@tWee(rJyW1LRtHST!bKQHbF+oz$R%asSvZQF zvI#^!t%QfA*}&Pr$eEuJhbuIsg7Vkn#4ZLTFZ>Hx-yf%`YVls7Yj4Y4XFX0`b2jOu z#DUyHNgB3~DQuY&I3nW);?hsTLfv(xh-!RAOYNRD#p|YoaWWMGAsM$$i*2T*_jNLORo5IY5b`rUF#YzTA^vLr+Y-1o^1jxSTDo|4gy`WDZ-Ds%c(u9 z>-NA&X0-mT?%q;zoQI#1ihh`@_AJkD@+`dgGa*_6xfQ*%UoTk;e)^&;nyrTZuw<=$ z>FLLW;WWwezT*BLy2v7>dNSGf5U$7j5)sn-ilTwFzO1dajUBDNwXNYlxH11-NPPDl z;jwZOJ#?r6YhZ5zgK^xoVl6q0wYbH{LJ+wqeGSn+Ep;vBV@+7R+Duz!hfv)m$C|Xq znus&3h6(Qh`UT3Ep+vsGvKlbolrdekM!KP(%k;%7`9BRzz*D8}7LieWC!YuZ7+%rI z3ibJ%*pT8oL#<;)F27jR#Iq#>I+Nmxmf^&5c#m1G3n z^4GblU0H-+5OD;6NXU)9;`H4wA9cpx&ig21vPv8{CY;qqaTvg?hP1hv8(Nngv6qNg z!e;UO_^2bauzbh9$EVKYU=kM8{e9q2c{qM|uGleq`hy#FDXKDH9jLk+f^6_&mF5=PN=@ zQCBjXXe1w)FcE?wcr!Qi5aPVvmF@4I+A2^Y9}6A;_=ybwkp1bYZQfU$>8_L9ok1rkvPvE@^v--3&AE&bv9Z#R@Qc_<#tjx_nJ{N zKB7eq0J{g~^JZKJ8UPCIB;m~*LhOXHfj9-!d&4R5zgBxcPc6!+V1Vp;f3^|DSEqXc z1*9_-`up$#h@!{b4_Mp)pp`&{OiTc{Ixq#1L&dB&9G_QPA&CU0AhzcSa{(gUILuow zx^wLcXD>0wiyjC7{DaIPFjlA6hm#IcCYJ@E9toXwjbq(gFXVl%MWE&@%G5}9DInEv zu)wd&k6CNuG5v2Eps%OPuPxy%#V9`>8|)GG7J+`gEvu9cf&i+)g$sk8jB{?^G!GqA z+pheCl|&<_XKIwqCHHWrzUQI&Xh|~EhViM62UKq zZ1Pt!Xbeiu3gwnKaxa7%tzvyVM&44JtU0bSe)>#B999}JgK5R>SU%=7U9p?IhSYB+*z5K?RzHBK*&p>WqSa2Yc9kISEebKPmG!o)gicm-sm-*!By^$0~w{1z5 z73wj;i$p5he)*hh4rbPH<%q$^+R>Pwhtv)Bvp-_tXVF?=n-j>(x&pA!$x+Sg=X0YO z3$^G0-Z4Y|V9*>fRQGZ3%7yZ_Z(9uC)}DUkP>|!kL5^4On&C9YD&d`d!d}8=s~w!z z&nTRtR znO&cG+gT3w(WZ?Cq`XAS?6s9+LEhN|pE!QjpEzCU&Sr(k3k%KUFuRKq?SwVTD5J?!(eA_^sQBGF3AhO$)fyxfRQ?Hlc>tx%0ZMR^eB4UWSaJsdMFZZ@1)0vxM z>PobST)$DZAGnhYYz9Hk(CaJ^NyR0cMyYMw#;tsifbhNF`1efPmRFkWYjylS+{Hsb zrh+G;n|MwWNrRkcq-OdZH?{N!`02zLxoWv}%J!a9nqbE&N-Z}|x>3izT5`e5^+E&{ z$e2;qVakG1phda8=ajliaIIp(SD#k9isFOv70-;EC1^<+irr5nPSoYpiq`XFCijix z1Y*)Hh32cq(=W9l`HR;&S;`d|y~jlu{Buv3^2yn0>tvCKZOrDg8SE7oEFK^gf^*+* z+0!(*dPT9myH&yQje#kQi?)<~B_`iK(Two>q6wX)q~J+&z!b3B=GeXSRdyKW^0b^15Q7gj)y7C<^DnD@Ve5%$zfy#)RvL zYithdk_A;%68ENA_ri3ggxo)z)1OM0uDGJShI|;UF(1E>a0T-7sl@-M(1TvYnCey^!LjH&p4jx%O@x*u|10kPf%GrL5 z;ffK8K~2n1>H;EBxDZ{mZ>tXEdt$!ht-AODca{nzP+6T!0S`Na$xy7MmDEvOo@`CM zG4f|>iQJoH13Ws5UTt3$W?b8d?-6nl$#JkYfvfJbaS5hj2aGo?*B3;wSYYfvmA8TJ zpKOJ!)6k|$DI&*r8JDYPd5dTRp-es!=v@-_1GXi`u)Cxkf{J$mTcjKDMf8o`TO`k^ zJJ(ZKDpGH<{*_eul_5Kkp~om$&z~9YkO#Jf+KxEr$5K32c@Nwd#u*|X+o!{~YS&}& zseqrysKuM;gD13^N0k(_b0Eq6VYp4M_#A#r=26b~yY68hEn15=Um%T-W0smeYA}V~ zt~)f)KXvU9u%MA*G6kt&yYZYaw~mGxT|bHf8i}EUbcb&{(liU`*#@U|6Ho1^{04nh zRlk;F`os2msx*JKwT#NRUWs6F8!8A`Zgt3}OfzEgG#Ij}oB4=JmAgzO|K>Zp%KkIN zq^Yirz1()V-7xY&-8o@(hu8`H)AdxiBZk)6k?BVh(3$L)2;`R6ybYXC{g4M{6G59L zqokrdZMr9cM2X>PJ46Z;OD>;D3_QZ&ev5_Bz&a;zVNPOnm3_3D1TNeD!AId>w=wW0 zinkEs9H6;Ka*_gyeUFi}v^5yHm?GS_!chsUJcjS`h%S%#nzwF8Ajb1sB=s8Px)ful zT>2f`nfrX0k4VB}@w=!ttTouzlpl4hW?|TYhL`4kDkkQf|e%%sGjA~Qk zeVX45?t_Y!u->n_cgnF3&KdzZK=t%Ng;v-A8aHYj0?#y&SKa0^n7W{+78 zJv!~@_LxT-Mk~WksKF2+0<%n^AxVyL-*u&-LRzrAp7#H+rG8$xMt%LhZRjizu9;psJbtS1FnYI;9x#8otQ%Aa9B zz?GX=cLWL|eH?DF%ka#-Zh=83Or5j0oPVNU!KXgcUaIy#EqO>j@PDKSFo)Biu9uSSemwFe&$;C@?ngrp7`-`D;E39H0uvn zi!ZWXxww1Tg(QLD=3g|ihSHx)O~y^sBw!Ml;MY|Kks{e6#91S zIXvkGW$iKPm+e}1X)y9qO*z@JL@R!6AVZsS#V)nzk;Wn(sjs|#V_YF+8u20Nn~EIa zyt`7JfBqp&;(^jyRm_eFH|4|z zrzyt$44jvjm~$6`|2# zhHY^n@X}?Q*rqppkuxoq??tvbDU_pRFY94IXzsTyT9{J`8I$qmh0S+j zYp%uQl3+b!p>UBa-kmO;$eG*Fjp+<0VcZbXIvdx<6v4>H{p2Go5nGmBikFLSFBsuDm! z)lKqtii)1;Wor^D!LNh+SQ?9GgGD14(xh6TF?5vGp&D9s`Hc;xy7ww9s;kq|qNfc~ z+SaC2&&I?@g(y)5)O{6cT zQ{*sDm33B9&F935wmvQ3HA?3er`_s1%WMmjXYIT$sGO09MRGcOSvjb$15eTg>|Uiy z7+Q~Q?r)LSE9$6*>l4xLce$Tjq0pk0Y!lYQcGWi~pNYkJe%xhXO-`+(%-C+!FlN@< zki7Clxv~;><(5bce%9Zf-ua~aXd}95>(se3hliuqdPP(bDLXd^ZaY8G7P3$8e8uUT zjkTz9JhaPR@MMRql{47BmEWR;ADnD_gZtV{D=LtK48S<=vECn^2Bdp~AOaTTmV4xf zb=Q1cSB!JeHQ`|xxn~%{u{(ukaS{QMAi&;K*}QdeIn|tX0rLHbl*7-i&c(`}Ox&*S ziVt3G?5|HrWkkb7ppl5I{OgcD|C@Ld1$}+r<@5LH<%VEka>@I|lkYtSg7~jd4qY3Y z{{}hU=iC1{(&O5GaXb6(fL$Pb+$7nkeY>+UK&Aa)sm(gY11*d%4Uh^%eOe(Mvx=f7 zscDtPeJ$ArXZSij4!n3)V>XTE7s`4NBb>m}#%&XG6tu7#s2B8IydDw^V>(SMS9QB? zF%~0Q?}?SW8ZZWQMq>TLz)C}w!1m;37kJYPY9&&Jg22g}bca2ZFaw;l+L-o(wRawv z`*Cxoi)okh@UhW8;J$n>zAf1cli6vP>XeVq>`W}=OM&sU?X_H1&-0!-*g?qijcU(5 zUY5>5b5BJLag8`6!C1P(Qcx*FQ`IO8tOmxGJ6GW4#J}#*@PU#GjYP+#yd((Qb;8<1 z8~%(~)la1g(dC`zznl~?rnCH6KDt5IFL3im`zt{=zH<*7BG4c(DFzN!j>Z0R(%iVX}z1k>)WTf$+ipXfI^yB@h6s4`n&(N{-m zuWT|;nZ2MqD;~dyyMO985HR&SNB2MPa{K4^{O9#Q?0J)w_;-MR-+%K@!C%*+ccb~2 z-8jDs{`;PUe-#{gCrAFjcPRXh^E*-fFQm73hRScW_1}emCocabOa=3Y@ZV_6za#w4 zXZ;I7<((PxkH`Q2*sZ?<{!S153sCJn(De@ZJ6ZI1fZxeEe*xg2{n@7frRw}H`uoDy zU!qUAzc=QuWw75-{yjGQ7X|?Ekq7|zTcr4R@!w;5e*qMb{85SDB6|NZ!uLDqzxU*S iLB8+rWcrsn{i9!(l>mF!K>z^u{YUz)#@nBN<^BgpFv6bz diff --git a/data_freeze/2_Data/3_Parameter/parameter.csv b/data_freeze/2_Data/3_Parameter/parameter.csv deleted file mode 100644 index a87dd3bf..00000000 --- a/data_freeze/2_Data/3_Parameter/parameter.csv +++ /dev/null @@ -1,202 +0,0 @@ -category;parameter;parameter_old;lower;middle;upper;unit;relevance;description -time;date_start;daten.beginn;1993;1993;1993;year;no parameter (strictly speaking);begin of data -time;date_end;daten.ende;2022;2022;2022;year;no parameter (strictly speaking);end of data -time;scen_begin;szen.beginn;2023;2023;2023;year;no parameter (strictly speaking);future: begin -time;scen_end;szen.ende;2050;2050;2050;year;no parameter (strictly speaking);future: end -time;scen_end_public;no parameter in previous model;2045;2045;2045;year;no parameter (strictly speaking);future: end (in publication) -time;bir_base_begin;geb.basis.beginn;2010;2010;2010;year;medium;base period (in the past) for birth rate, begin -time;bir_base_end;geb.basis.ende;2022;2022;2022;year;medium;base period (in the past) for birth rate, end -time;bir_cha_base_begin;no parameter in previous model;2007;2007;2007;year;low;base period (in the past) for origin change (mother-baby), begin -time;bir_cha_base_end;no parameter in previous model;2022;2022;2022;year;low;base period (in the past) for origin change (mother-baby), end -time;bir_sex_ratio_begin;no parameter in previous model;1993;1993;1993;year;low;base period (in the past) for sex ratio calculation, begin -time;bir_sex_ratio_end;no parameter in previous model;2022;2022;2022;year;low;base period (in the past) for sex ratio calculation, begin -time;dea_fso_date_start;no parameter in previous model;1993;1993;1993;year;low;fso mortality data of the past: begin -time;dea_fso_date_end;no parameter in previous model;2021;2021;2021;year;low;fso mortality data of the past: end -time;dea_base_begin;tod.basis.beginn;2012;2012;2012;year;low;base period (in the past) for death rate, begin (data should be available for both Zurich and Switzerland) -time;dea_base_end;tod.basis.ende;2021;2021;2021;year;low;base period (in the past) for death rate, end (data should be available for both Zurich and Switzerland) -time;ims_base_begin;no parameter in previous model;2013;2013;2013;year;low;base period (not the future) for immigration* rate, begin -time;ims_base_end;no parameter in previous model;2022;2022;2022;year;low;base period (not the future) for immigration* rate, end -time;ims_so_base_begin;no parameter in previous model;2013;2013;2013;year;low;base period (not the future) for proportion of sex and origin in immigration*, begin -time;ims_so_base_end;no parameter in previous model;2022;2022;2022;year;low;base period (not the future) for proportion of sex and origin in immigration*, end -time;ims_age_base_begin;no parameter in previous model;2013;2013;2013;year;low;base period (not the future) for proportion of age in immigration*, begin -time;ims_age_base_end;no parameter in previous model;2022;2022;2022;year;low;base period (not the future) for proportion of age in immigration*, end -time;ems_base_begin;no parameter in previous model;2013;2013;2013;year;low;base period (not the future) for emigration* rate, begin -time;ems_base_end;no parameter in previous model;2022;2022;2022;year;low;base period (not the future) for emigration* rate, end -time;ems_so_base_begin;no parameter in previous model;2013;2013;2013;year;low;base period (not the future) for proportion of sex and origin in emigration*, begin -time;ems_so_base_end;no parameter in previous model;2022;2022;2022;year;low;base period (not the future) for proportion of sex and origin in emigration*, end -time;ems_age_base_begin;no parameter in previous model;2013;2013;2013;year;low;base period (not the future) for proportion of age in emigration*, begin -time;ems_age_base_end;no parameter in previous model;2022;2022;2022;year;low;base period (not the future) for proportion of age in emigration*, end -time;rei_base_begin;no parameter in previous model;2013;2013;2013;year;low;base period (not the future) for relocation based on immigration* (proportion), begin -time;rei_base_end;no parameter in previous model;2022;2022;2022;year;low;base period (not the future) for relocation based on immigration* (proportion), end -time;ree_base_begin;no parameter in previous model;2013;2013;2013;year;low;base period (not the future) for relocation based on emigration* (proportion), begin -time;ree_base_end;no parameter in previous model;2022;2022;2022;year;low;base period (not the future) for relocation based on emigration* (proportion), end -time;nat_base_begin;no parameter in previous model;2013;2013;2013;year;low;base period (not the future) for naturalization, begin -time;nat_base_end;no parameter in previous model;2022;2022;2022;year;low;base period (not the future) for naturalization, end -time;spa_base_begin;no parameter in previous model;2013;2013;2013;year;low;base period (not the future) for living space, begin -time;spa_base_end;no parameter in previous model;2022;2022;2022;year;low;base period (not the future) for living space, end -time;spa_base_begin_52p;no parameter in previous model;2015;2015;2015;year;low;"base period (not the future) for living space, begin, district 'Escher Wyss' (district ID = 52; since empty apartments increased the mean living space values; before 2015)" -time;aca_base_begin;no parameter in previous model;2013;2013;2013;year;low;base period (not the future) for allocation, begin -time;aca_base_end;no parameter in previous model;2022;2022;2022;year;low;base period (not the future) for allocation, end -time;aca_base_begin_52p;no parameter in previous model;2015;2015;2015;year;low;"base period (not the future) for allocation, begin, district 'Escher Wyss' (district ID = 52; since empty apartments decreased the mean allocation values; before 2015)" -time;pro_begin;map.wohnbau.beginn;2023;2023;2023;year;low;"first year (of consolidated project list; reasonable: first scenario year)" -time;pro_end;map.wohnbau.ende;2035;2035;2035;year;low;last year (of consolidated project list) -time;own_base_begin;no parameter in previous model;2015;2015;2015;year;low;base period (not the future) for ownership calculation, begin -time;own_base_end;no parameter in previous model;2022;2022;2022;year;low;base period (not the future) for ownership calculation, end -age;age_min;no parameter in previous model;0;0;0;years (age);low;minimum age in the model -age;age_max;no parameter in previous model;120;120;120;years (age);low;maximum age in the model (should be clearly higher than maximum age in the population) -general;round_rate;no parameter in previous model;4;4;4;digits (rate in percent per year);no parameter;rounding of rates (digits, rate in percent per year) -general;round_prop;no parameter in previous model;4;4;4;digits (proportion in percent);no parameter;rounding of proportion (digits, proportion in percent) -general;round_area;no parameter in previous model;4;4;4;digits (area);no parameter;rounding of area (e.g. ha in the capacity and reserve module) -general;round_people;no parameter in previous model;0;0;0;digits (people);no parameter;rounding of people -general;round_aca;no parameter in previous model;4;4;4;digits (people per apartment);no parameter;rounding of allocation (people per apartment) -general;round_people_scen;no parameter in previous model;100;100;100;people (not digits);no parameter;"rounding of people (for future values; scenarios)" -general;round_prop_scen;no parameter in previous model;0;0;0;digits (proportion in percent);no parameter;"rounding of proportion (for future values; scenarios)" -general;round_prop_scen_a;no parameter in previous model;1;1;1;digits (proportion in percent);no parameter;"rounding of proportion (for future values; scenarios): comparison to previous scenarios by age" -birth;bir_age_begin;geb.alter.beginn;15;15;15;year;no parameter (strictly speaking);fertility rate: fertile age (fixed expression): begin -birth;bir_age_end;geb.alter.ende;49;49;49;year;no parameter (strictly speaking);fertility rate: fertile age (fixed expression): end -birth;bir_thres_origin;geb.anz.rate.heimat;100;100;100;persons;low;"age distribution of women (population): if there are less women than this threshold in the tails (cumulative measure), then the rate based on origin (but not district) is used. -" -birth;bir_thres_overall;geb.anz.rate.stadt;50;50;50;persons;low;age distribution of women (population): if there are less women than this threshold in the tails (cumulative measure), then the overall rate is used (e.g not the rate based on origin and district). -birth;bir_thres_const;geb.anz.rate.const;25;25;25;persons;low;age distribution of women (population): if there are less women than this threshold in the tails (cumulative measure), then a constant rate is used (e.g not the rate based on origin and district). The constant rate is set by the parameter bir_thres_value. -birth;bir_thres_value;geb.wert.rate.const;0;0;0;birth per woman and year in %;low;birth rate: if there are less women than a certain threshold (bir_thres_const) a constant fertility rate is used. The values is chosen with this parameter. -birth;bir_fer_span;no parameter in previous model;0.3;0.3;0.3;no unit;low;"proportion of data points used in the LOESS regressions of fertility by age; groups: district, year, origin" -birth;bir_prop_trend;geb.anteil.trend;20;20;20;percent;medium;"trend in addition to the mean; 20% means, 20% of the difference between trend and mean is added to the mean." -birth;bir_thres_percent;geb.grenze.prozent;20;20;20;percent;low;"It is not realistic that the fertility rate changes dramatically (i.e. tenfold increase). Therefore, this threshold regulates the range of potential future fertility rates (change in percent of mean; e.g. +/- 20%)." -birth;bir_window_thres;geb.window.grenz;13;13;13;years;low;filter over years (to smooth a potential break in the curve due to range of future fertility rates: bir_thres_percent). -birth;bir_lower_thres;no parameter in previous model;0;0;0;percent per year;low;lower threshold for the rate (e.g. the birth rate should not be negative), NA if there is no lower threshold -birth;bir_upper_thres;no parameter in previous model;NA;NA;NA;percent per year;low;upper threshold for the rate, NA if there is no upper threshold -birth;bir_plot_lim;no parameter in previous model;30;30;30;percent per year;no parameter;"the fertility rates of the past are compared with the predictions; the y-axis is limited (since the fertility rate of the past can be very large due to low population)" -birth;bir_fer_span_pred;no parameter in previous model;0.15;0.15;0.15;no unit;low;"after the prediction: proportion of data points used in the LOESS regressions of fertility by age; groups: district, year, origin" -birth;bir_cha_trend;geb.heimat.anteil.trend;0;0;0;percent;low;"origin change (mother-baby): trend in addition to the mean; 20% means, 20% of the difference between trend and mean is added to the mean." -birth;bir_cha_prop_trend;no parameter in previous model;20;20;20;percent;medium;"origin change (mother-baby): trend in addition to the mean; 20% means, 20% of the difference between trend and mean is added to the mean." -birth;bir_cha_thres_percent;no parameter in previous model;20;20;20;percent;low;"origin change (mother-baby): It is not realistic that the fertility rate changes dramatically (i.e. tenfold increase). Therefore, this threshold regulates the range of potential future fertility rates (change in percent of mean; e.g. +/- 20%)." -birth;bir_cha_window_thres;no parameter in previous model;13;13;13;years;low;origin change (mother-baby): filter over years (to smooth a potential break in the curve due to range of future fertility rates: bir_thres_percent). -birth;bir_cha_lower_thres;no parameter in previous model;0;0;0;percent;low;origin change (mother-baby): lower threshold for the rate (here: the rate should not be negative), NA if there is no lower threshold -birth;bir_cha_upper_thres;no parameter in previous model;100;100;100;percent;low;origin change (mother-baby): upper threshold for the rate (here: not more than 100 %), NA if there is no lower threshold -death;dea_lower;tod.jung.alter.ende.schweiz, tod.jung.alter.ende.ausland;30;30;30;years (age);low;"lower age limit of age-dependent ratio (death rates of Zurich and entire Switzerland); comment: limit not included in range with age-dependence" -death;dea_upper;tod.alt.alter.beginn.schweiz, tod.alt.alter.beginn.ausland;99;99;99;years (age);low;"upper age limit of age-dependent ratio (death rates of Zurich and entire Switzerland); comment: limit not included in range with age-dependence" -death;dea_radix;no parameter in previous model;100000;100000;100000;persons;no;radix (starting population) for life expectancy calcuation (no effect on result) -death;dea_age_at;no parameter in previous model;0;0;0;years (age);no;"life expectancy at certain age (usually at birth; i.e. age zero)" -death;dea_age_max_le;tod.alt.alter.ende;120;120;120;years (age);low;maximum age for the estimation of the life expectancy -death;dea_fso_cat_past;no parameter in previous model;2;2;2;no unit;no parameter;Category in the FSO data: (smoothed) data of the past -death;dea_fso_cat_future;no parameter in previous model;3;3;3;no unit;no parameter;Category in the FSO data: data of the future -death;dea_qx_NA_le;no parameter in previous model;0.8;0.8;0.8;per year;low;if there is no one at a certain age in the population (e.g. no 96 year old men), then qx (probability to die between age x and x+1) is NA. However, a value is need to multiply the subsequent survival probabilities -death;dea_mor_span;no parameter in previous model;0.2;0.2;0.2;no unit;low;"proportion of data points used in the LOESS regressions of mortality by age; groups: sex, region (City of Zurich, Switzerland)" -immigration*;ims_rate_prop_trend;zuz.rate.anteil.trend;20;20;20;percent;low;"immigration rate*: trend in addition to the mean; 20% means, 20% of the difference between trend and mean is added to the mean." -immigration*;ims_rate_thres_percent;zuz.rate.grenze.prozent;20;20;20;percent;low;"It is not realistic that the immigration* rates changes dramatically (i.e. tenfold increase). Therefore, this threshold regulates the range of potential rates (change in percent of mean; e.g. +/- 20%)." -immigration*;ims_rate_window_thres;zuz.rate.window.grenz;13;13;13;years;low;filter over years (to smooth a potential break in the curve due to range of future immigration* rates: imm_rate_thres_percent). -immigration*;ims_rate_lower_thres;no parameter in previous model;0;0;0;percent;no parameter;lower threshold for the rate (here: the rate should not be negative), NA if there is no lower threshold -immigration*;ims_so_prop_trend;zuz.ghvert.anteil.trend;20;20;20;percent;low;"proportion of sex and origin: trend in addition to the mean; 20% means, 20% of the difference between trend and mean is added to the mean." -immigration*;ims_so_thres_percent;zuz.ghvert.grenze.prozent;20;20;20;percent;low;"It is not realistic that the proportions of sex and origin change dramatically (i.e. tenfold increase). Therefore, this threshold regulates the range of potential proportions (change in percent of mean; e.g. +/- 20%)." -immigration*;ims_so_window_thres;"zuz.ghvert.window.grenz -";13;13;13;years;low;filter over years (to smooth a potential break in the curve due to range of future proportions -immigration*;ims_so_lower_thres;no parameter in previous model;0;0;0;percent;no parameter;lower threshold for the proportions (here: the proportions should not be negative), NA if there is no lower threshold -immigration*;ims_span_y;no parameter in previous model;0.3;0.3;0.3;no unit;low;"proportion of data points used in the loess regressions of proportion by year; groups: district, age, sex, origin (immigration* by district, year, age, sex, origin)" -immigration*;ims_span_a;no parameter in previous model;0.1;0.1;0.1;no unit;low;"proportion of data points used in the LOESS regressions of proportion by age; groups: district, year, sex, origin (age proportion by district, year, sex, origin)" -immigration*;ims_age_prop_trend;no parameter in previous model;20;20;20;percent;low;"age distribution of immigrations*: trend in addition to the mean; 20% means, 20% of the difference between trend and mean is added to the mean." -immigration*;ims_age_thres_percent;no parameter in previous model;20;20;20;percent;low;"age distribution of immigrations*: It is not realistic that the proportion of age changes dramatically (i.e. tenfold increase). Therefore, this threshold regulates the range of potential proportions (change in percent of mean; e.g. +/- 20%)." -immigration*;ims_age_window_thres;no parameter in previous model;13;13;13;years;low;age distribution of immigrations*: filter over years (to smooth a potential break in the curve due to range of future proportions -immigration*;ims_age_lower_thres;no parameter in previous model;0;0;0;percent;no parameter;age distribution of immigrations*: lower threshold for the proportions (here: the proportions should not be negative), NA if there is no lower threshold -emigration*;ems_rate_prop_trend;weg.rate.anteil.trend;20;20;20;percent;low;"emigration rate*: trend in addition to the mean; 20% means, 20% of the difference between trend and mean is added to the mean." -emigration*;ems_rate_thres_percent;weg.rate.grenze.prozent;20;20;20;percent;low;"It is not realistic that the emigration* rates changes dramatically (i.e. tenfold increase). Therefore, this threshold regulates the range of potential rates (change in percent of mean; e.g. +/- 20%)." -emigration*;ems_rate_window_thres;weg.rate.window.grenz;13;13;13;years;low;filter over years (to smooth a potential break in the curve due to range of future emigration* rates: imm_rate_thres_percent). -emigration*;ems_rate_lower_thres;no parameter in previous model;0;0;0;percent;no parameter;lower threshold for the rate (here: the rate should not be negative), NA if there is no lower threshold -emigration*;ems_so_prop_trend;weg.ghvert.anteil.trend;20;20;20;percent;low;"proportion of sex and origin: trend in addition to the mean; 20% means, 20% of the difference between trend and mean is added to the mean." -emigration*;ems_so_thres_percent;weg.ghvert.grenze.prozent;20;20;20;percent;low;"It is not realistic that the proportions of sex and origin change dramatically (i.e. tenfold increase). Therefore, this threshold regulates the range of potential proportions (change in percent of mean; e.g. +/- 20%)." -emigration*;ems_so_window_thres;"weg.ghvert.window.grenz -";13;13;13;years;low;filter over years (to smooth a potential break in the curve due to range of future proportions -emigration*;ems_so_lower_thres;no parameter in previous model;0;0;0;percent;no parameter;lower threshold for the proportions (here: the proportions should not be negative), NA if there is no lower threshold -emigration*;ems_span_y;no parameter in previous model;0.3;0.3;0.3;no unit;low;"proportion of data points used in the LOESS regressions of proportion by year; groups: district, age, sex, origin (emigration* by district, year, age, sex, origin)" -emigration*;ems_span_a;no parameter in previous model;0.1;0.1;0.1;no unit;low;"proportion of data points used in the LOESS regressions of proportion by age; groups: district, year, sex, origin (age proportion by district, year, sex, origin)" -emigration*;ems_age_prop_trend;no parameter in previous model;20;20;20;percent;low;"age distribution of emigrations*: trend in addition to the mean; 20% means, 20% of the difference between trend and mean is added to the mean." -emigration*;ems_age_thres_percent;no parameter in previous model;20;20;20;percent;low;"age distribution of emigrations*: It is not realistic that the proportion of age changes dramatically (i.e. tenfold increase). Therefore, this threshold regulates the range of potential proportions (change in percent of mean; e.g. +/- 20%)." -emigration*;ems_age_window_thres;no parameter in previous model;13;13;13;years;low;age distribution of emigrations*: filter over years (to smooth a potential break in the curve due to range of future proportions -emigration*;ems_age_lower_thres;no parameter in previous model;0;0;0;percent;no parameter;age distribution of emigrations*: lower threshold for the proportions (here: the proportions should not be negative), NA if there is no lower threshold -relocation and immigration*;rei_age_max;umz.alter.max;70;70;70;years;low;as of this age: one single proportion (relocation on immigration*) -relocation and immigration*;rei_ims_span_dyao;similar to umz.window.alter;0.2;0.2;0.2;no unit;medium;"proportion of data points used in the LOESS regressions of immigration* by age; groups: district, year, origin" -relocation and immigration*;rei_rel_span_dyao;similar to umz.window.alter;0.2;0.2;0.2;no unit;medium;"proportion of data points used in the LOESS regressions of relocation by age; groups: district, year, origin" -relocation and immigration*;rei_ims_span_dao;similar to umz.window.alter;0.12;0.12;0.12;no unit;medium;"proportion of data points used in the LOESS regressions of immigration* by age; groups: district, origin" -relocation and immigration*;rei_rel_span_dao;similar to umz.window.alter;0.12;0.12;0.12;no unit;medium;"proportion of data points used in the LOESS regressions of relocation by age; groups: district, origin" -relocation and immigration*;rei_ims_thres_y;similar to umz.anz.rate.stadt;0.4;0.4;0.4;persons per year;low;when immigration* is above this threshold: proportion with year (and district, age, origin), below without year (but with district, age, origin). -relocation and immigration*;rei_prop_span;similar to umz.window.alter;0.3;0.3;0.3;no unit;medium;"proportion of data points used in the LOESS regressions of proportion by age; groups: district, year, origin" -relocation and immigration*;rei_prop_trend;umz.anteil.trend;20;20;20;percent;low;"relocation proportion on immigration*: trend in addition to the mean; 20% means, 20% of the difference between trend and mean is added to the mean." -relocation and immigration*;rei_thres_percent;no parameter in previous model;20;20;20;percent;low;"relocation proportion on immigration*: It is not realistic that the proportion changes dramatically (i.e. tenfold increase). Therefore, this threshold regulates the range of potential proportions (change in percent of mean; e.g. +/- 20%)." -relocation and immigration*;rei_window_thres;no parameter in previous model;13;13;13;years;low;relocation proportion on immigration*: filter over years (to smooth a potential break in the curve due to range of future proportions -relocation and immigration*;rei_lower_thres;no parameter in previous model;0;0;0;percent;no parameter;relocation proportion on immigration*: lower threshold for the proportions (here: the proportions should not be negative), NA if there is no lower threshold -relocation and immigration*;rei_upper_thres;no parameter in previous model;100;100;100;percent;no parameter;relocation proportion on immigration*: lower threshold for the proportions (here: the proportions should not be more than 100 percent), NA if there is no lower threshold -relocation and immigration*;rei_pred_span;similar to umz.window.alter;0.15;0.15;0.15;no unit;medium;"after expansion of the prediction to age beyond age threshold: proportion of data points used in the LOESS regressions of the prediction (proportion) by age; groups: district, year, origin" -relocation and emigration*;ree_age_max;umz.alter.max;70;70;70;years;low;as of this age: one single proportion (relocation on emigration*) -relocation and emigration*;ree_ems_span_dyao;similar to umz.window.alter;0.2;0.2;0.2;no unit;medium;"proportion of data points used in the LOESS regressions of emigration* by age; groups: district, year, origin" -relocation and emigration*;ree_rel_span_dyao;similar to umz.window.alter;0.2;0.2;0.2;no unit;medium;"proportion of data points used in the LOESS regressions of relocation by age; groups: district, year, origin" -relocation and emigration*;ree_ems_span_dao;similar to umz.window.alter;0.12;0.12;0.12;no unit;medium;"proportion of data points used in the LOESS regressions of emigration* by age; groups: district, origin" -relocation and emigration*;ree_rel_span_dao;similar to umz.window.alter;0.12;0.12;0.12;no unit;medium;"proportion of data points used in the LOESS regressions of relocation by age; groups: district, origin" -relocation and emigration*;ree_ems_thres_y;similar to umz.anz.rate.heimat;0.4;0.4;0.4;persons per year;low;when immigration* is above this threshold: proportion with year (and district, age, origin), below without year (but with district, age, origin). -relocation and emigration*;ree_prop_span;similar to umz.window.alter;0.3;0.3;0.3;no unit;medium;"proportion of data points used in the LOESS regressions of proportion by age; groups: district, year, origin" -relocation and emigration*;ree_prop_trend;umz.anteil.trend;20;20;20;percent;low;"relocation proportion on emigration*: trend in addition to the mean; 20% means, 20% of the difference between trend and mean is added to the mean." -relocation and emigration*;ree_thres_percent;no parameter in previous model;20;20;20;percent;low;"relocation proportion on emigration*: It is not realistic that the proportion changes dramatically (i.e. tenfold increase). Therefore, this threshold regulates the range of potential proportions (change in percent of mean; e.g. +/- 20%)." -relocation and emigration*;ree_window_thres;no parameter in previous model;13;13;13;years;low;relocation proportion on emigration*: filter over years (to smooth a potential break in the curve due to range of future proportions -relocation and emigration*;ree_lower_thres;no parameter in previous model;0;0;0;percent;no parameter;relocation proportion on emigration*: lower threshold for the proportions (here: the proportions should not be negative), NA if there is no lower threshold -relocation and emigration*;ree_upper_thres;no parameter in previous model;100;100;100;percent;no parameter;relocation proportion on emigration*: lower threshold for the proportions (here: the proportions should not be more than 100 percent), NA if there is no lower threshold -relocation and emigration*;ree_pred_span;similar to umz.window.alter;0.15;0.15;0.15;no unit;medium;"after expansion of the prediction to age beyond age threshold: proportion of data points used in the LOESS regressions the prediction (proportion) by age; groups: district, year, origin" -naturalization;nat_pop_span_das;similar to brw.window.alter;0.1;0.1;0.1;no unit;low;"proportion of data points used in the LOESS regressions of foreign population by age; groups: district, sex" -naturalization;nat_nat_span_das;similar to brw.window.alter;0.15;0.15;0.15;no unit;low;"proportion of data points used in the LOESS regressions of naturalization by age; groups: district, sex" -naturalization;nat_pop_thres;similar to brw.rate.anz.null;0.5;0.5;0.5;persons;low;if less persons in the (smoothed) foreign population than this threshold: then the naturalization rate is set to nat_pop_value -naturalization;nat_pop_value;no parameter in previous model;0;0;0;percent per year;low;value of the naturalization rate, if the foreign population is below nat_pop_thres -naturalization;nat_rate_span_das;similar to brw.window.alter;0.1;0.1;0.1;no unit;low;"proportion of data points used in the LOESS regressions of the rate by age; groups: district, sex" -naturalization;nat_pop_span_ya;similar to brw.window.alter;0.1;0.1;0.1;no unit;low;"proportion of data points used in the LOESS regressions of foreign population by age; groups: year (base years only)" -naturalization;nat_nat_span_ya;similar to brw.window.alter;0.15;0.15;0.15;no unit;low;"proportion of data points used in the LOESS regressions of naturalization by age; groups: year (base years only)" -naturalization;nat_rate_span_ya;similar to brw.window.alter;0.1;0.1;0.1;no unit;low;"proportion of data points used in the LOESS regressions of the rate by age; groups: year (base years only)" -naturalization;nat_prop_trend;brw.anteil.trend;20;20;20;percent;low;"naturalization: trend in addition to the mean; 20% means, 20% of the difference between trend and mean is added to the mean." -naturalization;nat_thres_percent;no parameter in previous model;20;20;20;percent;low;"naturalization: It is not realistic that the rate changes dramatically (i.e. tenfold increase). Therefore, this threshold regulates the range of potential rates (change in percent of mean; e.g. +/- 20%)." -naturalization;nat_window_thres;no parameter in previous model;13;13;13;years;low;naturalization: filter over years (to smooth a potential break in the curve due to range of future proportions -naturalization;nat_lower_thres;no parameter in previous model;0;0;0;percent;low;naturalization: lower threshold for the proportions (here: the naturalization rates should not be negative), NA if there is no lower threshold -naturalization;nat_pop_span_a;similar to brw.window.alter;0.1;0.1;0.1;no unit;low;"proportion of data points used in the LOESS regressions of foreign population by age; no groups (base years only)" -naturalization;nat_nat_span_a;similar to brw.window.alter;0.15;0.15;0.15;no unit;low;"proportion of data points used in the LOESS regressions of naturalization by age; no groups (base years only)" -naturalization;nat_rate_span_a;similar to brw.window.alter;0.1;0.1;0.1;no unit;low;"proportion of data points used in the LOESS regressions of the rate by age; no groups (base years only)" -naturalization;nat_factor_thres;no parameter in previous model;0.5;0.5;0.5;naturalizations per year;low;if the naturalization rate is below this threshold: then the trend factor ist set to nat_factor_value -naturalization;nat_factor_value;no parameter in previous model;0;0;0;no unit;low;value of the trend factor, if the naturalization rate is below nat_factor_thres -naturalization;nat_rate_span_dyas;similar to brw.window.alter;0.1;0.1;0.1;no unit;low;"proportion of data points used in the LOESS regressions of the rate by age; groups: district, year, sex" -capacity and reserves;car_sc;kareb.vf;25;25;25;percent;medium;"Proportion of staircases; for the conversion from total area to living area." -capacity and reserves;car_resi;kareb.wohnant;-30;10;50;percent;high;Residence portion ('slider'): -100% = minimum residential share according to the building regulation (BZO), 0% = real residential share, +100% = maximum residential share according to building regulation. -capacity and reserves;car_plot;kareb.areal;0;50;100;percent;high;"Proportion of plot construction ('slider'); 0% = without plot construction, 100% = with plot construction" -capacity and reserves;car_uti_input;no parameter in previous model;85;85;85;percent;high;degree of utilization used to calculate the input data -capacity and reserves;car_uti;kareb.ausbau;75;85;95;percent;high;"degree of utilization; linear influence on the capacity" -capacity and reserves;car_pp;kareb.ina.prozentpunkte;0;0;0;percent points;medium;usage: less or more percentage points (parameter between -100 and +100) -capacity and reserves;car_y;kareb.ina.jahr;2048;2048;2048;year;low;Reference year of the usage values -capacity and reserves;car_lambda;kareb.ina.lambda;-0.04;-0.04;-0.04;per year;high;"lambda value of an exponential function exp(lambda * time since start of scenario); proportion of utilization per year" -living space;spa_apart;wf.anzwohn;500;500;500;apartments;low;"Amount of apartments per district and owner; if less apartments, then the value of the entire city (by owner) is used" -living space;spa_prop_trend;wf.anteil.trend;0;20;50;percent;high;"living space: trend in addition to the mean; 20% means, 20% of the difference between trend and mean is added to the mean." -living space;spa_thres_percent;wf.grenze.prozent;20;20;20;percent;low;"living space: It is not realistic that the living space changes dramatically (i.e. tenfold increase). Therefore, this threshold regulates the range of potential changes (change in percent of mean; e.g. +/- 20%)." -living space;spa_window_thres;wf.window.szen;7;7;7;years;low;living space: filter over years (to smooth a potential break in the curve due to range of future proportions -living space;spa_prop_trend_52p;no parameter in previous model;0;0;0;percent;low;"living space in the Escher Wyss district (district-ID = 52): trend in addition to the mean; 20% means, 20% of the difference between trend and mean is added to the mean." -allocation;aca_apart;bq.anzwohn;500;500;500;apartments;low;"Amount of apartments per district and owner; if less apartments, then the value of the entire city (by owner) is used" -allocation;aca_prop_trend;bq.anteil.trend;0;20;50;percent;high;"allocation: trend in addition to the mean; 20% means, 20% of the difference between trend and mean is added to the mean." -allocation;aca_thres_percent;bq.grenze.prozent;20;20;20;percent;low;"allocation: It is not realistic that the allocation values change dramatically (i.e. tenfold ncrease). Therefore, this threshold regulates the range of potential changes (change in percent of mean; e.g. +/- 20%)." -allocation;aca_window_thres;bq.window.szen;7;7;7;years;low;allocation: filter over years (to smooth a potential break in the curve due to range of future proportions -allocation;aca_prop_trend_52p;no parameter in previous model;0;0;0;percent;low;"allocation in the Escher Wyss district (district-ID = 52): trend in addition to the mean; 20% means, 20% of the difference between trend and mean is added to the mean." -projects;pro_lambda_begin;map.lambda.beginn;3;3;3;per year;low;"the time delay of the projects (consolidated project list) is determined by means of an exponential function (with lambda); value at the beginning of the time period (of the consolidated project list)." -projects;pro_lambda_end;map.lambda.ende;0.5;0.5;0.5;per year;low;"the time delay of the projects (consolidated project list) is determined by means of an exponential function (with lambda); value at the end of the time period (of the consolidated project list)." -projects;pro_transfo;no parameter in previous model;5;5;5;no unit;low;transformation parameter (non-linear curve from pro_lambda_begin to pro_lambda_end) -projects;pro_max_delay;no parameter in previous model;5;5;5;years;low;maximum delay -projects;pro_not_scheduled_ip;part of map.nicht1 (projektiert);30;30;30;percent;high;Percentage of projects (i.e. apartments) that are not realized: scheduled, from Infoplan -projects;pro_not_scheduled_other;part of map.nicht1 (projektiert);20;20;20;percent;high;Percentage of projects (i.e. apartments) that are not realized: scheduled, other -projects;pro_not_submitted;map.nicht2 (eingereicht);0;0;0;percent;high;Percentage of projects (i.e. apartments) that are not realized: submitted -projects;pro_not_approved;map.nicht3 (bewilligt);0;0;0;percent;high;Percentage of projects (i.e. apartments) that are not realized: approved -projects;pro_not_started;map.nicht4 (Bau begonnen);0;0;0;percent;high;Percentage of projects (i.e. apartments) that are not realized: started -projects;pro_not_completed;map.nicht5 (fertiggestellt);0;0;0;percent;high;Percentage of projects (i.e. apartments) that are not realized: completed -projects;pro_not_onhold;map.nicht6 (sistiert);10;10;10;percent;high;Percentage of projects (i.e. apartments) that are not realized: on hold -ownership;own_prop_trend;ea.anteil.trend;50;50;50;percent;low;"ownership: trend in addition to the mean; 20% means, 20% of the difference between trend and mean is added to the mean." -ownership;own_thres_percent;ea.grenze.prozent;20;20;20;percent;low;"ownership: It is not realistic that the proportion changes dramatically (i.e. tenfold increase). Therefore, this threshold regulates the range of potential proportions (change in percent of mean; e.g. +/- 20%)." -ownership;own_window_thres;ea.window.szen;7;7;7;years;low;ownership: filter over years (to smooth a potential break in the curve due to range of future proportions -ownership;own_lower_thres;no parameter in previous model;0;0;0;percent;no parameter;ownership: lower threshold for the proportions (here: the proportions should not be negative), NA if there is no lower threshold -ownership;own_upper_thres;no parameter in previous model;100;100;100;percent;no parameter;ownership: lower threshold for the proportions (here: the proportions should not be more than 100 percent), NA if there is no lower threshold -housing model;car_coop;similar to wohn.modell.typ;100;100;100;percent;low;Percentage of cooperative housing can be used from capacity/reserves (car_coop = 100), or from the trends in the districts (car_coop = 0) or a mixture of both data sources. In other words: car_coop = percentage used from capacity/reserves. -housing model;car_trust;no parameter in previous model;0;0;0;percent;high;If the amount of people according to the project list exceeds the population (in a given year!) according to capacity/reserves: trust the capacity/reserves number (parameter = 100%)? Or the project list (parameter = 0%)? -housing model;car_max_trust;no parameter in previous model;100;100;100;percent;high;If the amount of people exceeds the maximum (over all years!) according to capacity/reserves: trust the capacity/reserves population (parameter = 100%)? Or the calculated population (parameter = 0%)? Idea: not more people than population according to reserves usage -housing model;empty_coop;similar to wohn.modell.anteil.leerwhg;0;0;0;percent;low;Percentage of empty apartments: cooperative housing -housing model;empty_private;similar to wohn.modell.anteil.leerwhg;0;0;0;percent;low;Percentage of empty apartments: private housing -demography and housing model;less_ims;similar to mod.ant.zuz (in the previous model only one parameter for both situations: less or more living space available);75;75;75;percent;high;less living space available (according to reserves, compared to trend calcuation). Then immigration* is decreased, and emigration* increased. This parameter determines how much of the difference is compensated by changes of immigration* (the remainder is corrected with emigration*) -demography and housing model;more_ims;similar to mod.ant.zuz (in the previous model only one parameter for both situations: less or more living space available);50;50;50;percent;high;more living space available (according to reserves, compared to trend calcuation). Then immigration* is increased, and emigration* decreased. This parameter determines how much of the difference is compensated by changes of immigration* (the remainder is corrected with emigration*) -demography and housing model;deh_span;no parameter in previous model;0.04;0.04;0.04;no unit;medium;"in future population: proportion of data points used in the LOESS regressions by age; groups: district, year, sex, origin" -output;basis_fact;no parameter in previous model;1;1;1;no unit;no parameter;value for field BasisSzenarienCd in DWH for factual values from the past -output;basis_scen;no parameter in previous model;2;2;2;no unit;no parameter;value for field BasisSzenarienCd in DWH for calculated scenario values diff --git a/data_freeze/2_Data/3_Parameter/variables.yml b/data_freeze/2_Data/3_Parameter/variables.yml deleted file mode 100644 index e31dd47a..00000000 --- a/data_freeze/2_Data/3_Parameter/variables.yml +++ /dev/null @@ -1,134 +0,0 @@ -# plots ----------------------------------------------------------- -pdf_output: FALSE - - -# Paths ----------------------------------------------------------- -# path for code -code_path: !expr paste0(here::here(), "/1_Code/") - -# path for data -data_path: !expr paste0(here::here(), "/2_Data/") - -# log file -log_file: !expr paste0(here::here(), "/2_Data/6_Log/log.txt") - -# temporary path (since data not on open data yet) -car_path: !expr paste0(here::here(), "/2_Data/1_Input/KaReB.csv") - -# path for results (graphics) -res_path: !expr paste0(here::here(), "/3_Results/") - -# path for exports (rates) -exp_path: "4_Rates/" - -# path for outputs (future: population and demographic processes) -out_path: "5_Outputs/" - -# district file -dis_file: "/2_Data/2_Lookup/lookupDistrict.csv" - -# parameter file -para_file: "/2_Data/3_Parameter/parameter.csv" - -# output path for quarto book -book_path: "/3_Results/book" - - -# values ----------------------------------------------------------- -# capacity, reserves (car) -car_initial: ["Kapazitaet", "Bestand", "Reserve", "Inanspruchnahme"] -car_category: ["capacity", "buildings", "reserve", "usage"] - -# project status -pro_initial: ["projektiert, Infoplan", "projektiert, andere", "eingereicht", "bewilligt", "Bau begonnen", "fertiggestellt", "sistiert"] -pro_category: ["scheduled, Infoplan", "scheduled, other", "submitted", "approved", "construction started", "completed", "on hold"] - - -# unique levels ----------------------------------------------------------- - -# sex -text_s: ["male", "female"] - -# origin -text_o: ["Swiss", "foreign"] - -# region -text_r: ["Zurich", "Switzerland"] - -# residence portion -text_e: ["minimum portion", "real portion", "maximum portion"] - -# plot construction -text_p: ["with plot construction", "without plot construction"] - -# property owner -text_w: ["cooperative housing", "private housing"] - -# indicator (new or removed apartments)8 -text_i: ["new", "removed"] - -# past and scenarios -text_c: ["past", "lower", "middle", "upper"] - - -# categories (t = text) and associated lookup tables ---------------------- -# age category 1 -age_1: [30, 40] -age_1t: ["0-29", "30-39", "40-49"] - -# age category 2 -age_2: !expr seq(25, 40, by = 5) -age_2t: ["15-24", "25-29", "30-34", "35-39", "40-49"] - -# age category 3 -age_3: !expr seq(0, 90, by = 10) -age_3t: ["0-9", "10-19", "20-29", "30-39", "40-49", "50-59", "60-69", "70-79", "80-89", "90+"] - -# age category 4 -age_4: !expr seq(0, 80, by = 20) -age_4t: ["0-19", "20-39", "40-59", "60-79", "80+"] - - -# colors, graphics -------------------------------------------------------- -# colors (e.g. for sex, origin) -col_6: ["#005CA9", "#83072A", "#EB5E04", "#FBBA00", "#007229", "#9B9B9B"] - -# grey -col_grey: "grey90" - - -# open data (od) ---------------------------------------------------------- - -# population (pop) -pop_od: "https://data.stadt-zuerich.ch/dataset/80d5c8af-b389-41d2-b6d8-d0deb1639f00/resource/b2abdef7-3e3f-4883-8033-6787a1561987/download/bev390od3903.csv" - -# birth (bir) -bir_od: "https://data.stadt-zuerich.ch/dataset/aef0654e-1691-49a2-b5fd-2fb220b78bfd/resource/6b066954-c9ce-4438-be0a-6ab01b3e525b/download/bev570od5702.csv" - -# death (dea) -dea_od: "https://data.stadt-zuerich.ch/dataset/bev_todesfaelle_jahr_alter_geschlecht_herkunft_quartier_od5703/download/BEV570OD5703.csv" - -# death (dea, data of the Federal Statistical Office FSO) -dea_fso_od: "https://data.stadt-zuerich.ch/dataset/bfs_bev_sterberaten_jahr_alter_geschlecht_herkunft_od5708/download/BEV570OD5708.csv" - -# immigration (imm) -# migration in the City of Zurich; across the city border -imm_od: "https://data.stadt-zuerich.ch/dataset/bev_zuz_jahr_quartier_alter_geschlecht_herkunft_od5704/download/BEV570OD5704.csv" - -# emigration (emi) -# migration out of the City of Zurich; across the city border -emi_od: "https://data.stadt-zuerich.ch/dataset/bev_wegz_jahr_quartier_alter_geschlecht_herkunft_od5705/download/BEV570OD5705.csv" - -# relocation (rel) -# migration within the City of Zurich; inside the city border -rel_od: "https://data.stadt-zuerich.ch/dataset/bev_umzuege_jahr_quartier_alter_geschlecht_herkunft_od5706/download/BEV570OD5706.csv" - -# naturalization (nat) -# on the open data platform the data consist both of naturalization and denaturalization -nat_od: "https://data.stadt-zuerich.ch/dataset/bev_brw_jahr_alter_geschlecht_herkunft_quartier_od5707/download/BEV570OD5707.csv" - -# living space (spa) -spa_od: "https://data.stadt-zuerich.ch/dataset/bau_best_whg_geb_gebmwhg_wfl_pers_statzone_jahr_od6981/download/BAU698OD6981.csv" - -# population scenarios on open data (sce) -sce_od: "https://data.stadt-zuerich.ch/dataset/bev_szenarien_od3440/download/BEV344OD3440.csv"