forked from xiaolibird/PhenoGrpah_pipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeta_cluster_2.py
50 lines (39 loc) · 1.23 KB
/
meta_cluster_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# -*- coding: utf-8 -*-
"""
Created on Sat Jan 14 22:14:10 2017
@author: Dell
"""
import numpy as np
import pandas as pd
import fcs_reader as fcsrd
import glob
import os
from sklearn.metrics.cluster import normalized_mutual_info_score, adjusted_rand_score
from sklearn.metrics import precision_recall_fscore_support
#from sklearn.cluster import KMeans, MiniBatchKMeans
quantile_995 = np.load("normalizer.npy")
n_healthy = 5
n_patients = 16
n_conditions = 18;
import phenograph as pg
from time import clock
# clustering all data for one sample
sample_names = []
for i in range(n_patients):
#for i in range(1):
fname = glob.glob('F:\\cytowork\\experiment_44185_files\\*.fcs')[n_conditions*(i+n_healthy):n_conditions*(i+n_healthy+1)]
# create folder
sample_name = fname[0].split('\\')
sample_name = sample_name[-1];
sample_name = sample_name.split('_')
sample_name = sample_name[0]
sample_names.append(sample_name)
flag = False
for sample_name in sample_names:
if flag:
centroids = np.load(sample_name+"\\centroids.npy")
print(centroids)
flag = True
else:
centroids = np.vstack((centroids,np.load(sample_name+"\\centroids.npy")))
print(centroids)