-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
333 lines (278 loc) · 10.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
from __future__ import print_function
from __future__ import division
import argparse
import random
import torch
from PIL import Image
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
from torch.autograd import Variable
import numpy as np
# from warpctc_pytorch import CTCLoss
from torch.nn import CTCLoss
from torch.utils.data.dataset import Dataset
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
# from sklearn.model_selection import train_test_split
import os
import utils
import dataset
import models.crnn as net
import params
# parser = argparse.ArgumentParser()
# parser.add_argument('-train', '--trainroot', required=True, help='path to train dataset')
# parser.add_argument('-val', '--valroot', required=True, help='path to val dataset')
# args = parser.parse_args()
# if not os.path.exists(params.expr_dir):
# os.makedirs(params.expr_dir)
# ensure everytime the random is the same
random.seed(params.manualSeed)
np.random.seed(params.manualSeed)
torch.manual_seed(params.manualSeed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cudnn.benchmark = True
if torch.cuda.is_available() and not params.cuda:
print("WARNING: You have a CUDA device, so you should probably set cuda in params.py to True")
# -----------------------------------------------
"""
In this block
Get train and val data_loader
"""
def loader_param():
img_x = 32
img_y = 128
batch_size = 4
return(img_x, img_y, batch_size)
img_x, img_y, batch_size = loader_param()
dataset = dataset.dataset(image_root="../IAM Dataset/words/", label_root = "../IAM Dataset/ascii/labels.txt", img_x = img_x, img_y = img_y)
train_loader, val_loader = utils.dataloader(dataset = dataset, batch_size = 16, validation_split = 0.2, shuffle_dataset = True)
# def data_loader():
# # train
# train_dataset = dataset.lmdbDataset(root=args.trainroot)
# assert train_dataset
# if not params.random_sample:
# sampler = dataset.randomSequentialSampler(train_dataset, params.batchSize)
# else:
# sampler = None
# train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=params.batchSize, \
# shuffle=True, sampler=sampler, num_workers=int(params.workers), \
# collate_fn=dataset.alignCollate(imgH=params.imgH, imgW=params.imgW, keep_ratio=params.keep_ratio))
# # val
# val_dataset = dataset.lmdbDataset(root=args.valroot, transform=dataset.resizeNormalize((params.imgW, params.imgH)))
# assert val_dataset
# val_loader = torch.utils.data.DataLoader(val_dataset, shuffle=True, batch_size=params.batchSize, num_workers=int(params.workers))
# return train_loader, val_loader
# train_loader, val_loader = data_loader()
# -----------------------------------------------
"""
In this block
Net init
Weight init
Load pretrained model
"""
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def net_init():
nclass = len(params.alphabet) + 1
crnn = net.CRNN(params.imgH, params.nc, nclass, params.nh)
crnn.apply(weights_init)
if params.pretrained != '':
print('loading pretrained model from %s' % params.pretrained)
if params.multi_gpu:
crnn = torch.nn.DataParallel(crnn)
crnn.load_state_dict(torch.load(params.pretrained))
return crnn
# crnn = net_init()
crnn = net.CRNN(32, 3, 79, 1024)
print(crnn)
# -----------------------------------------------
"""
In this block
Init some utils defined in utils.py
"""
# Compute average for `torch.Variable` and `torch.Tensor`.
loss_avg = utils.averager()
# Convert between str and label.
converter = utils.strLabelConverter()
# -----------------------------------------------
"""
In this block
criterion define
"""
criterion = CTCLoss()
# -----------------------------------------------
"""
In this block
Init some tensor
Put tensor and net on cuda
NOTE:
image, text, length is used by both val and train
becaues train and val will never use it at the same time.
"""
image = torch.FloatTensor(params.batchSize, 3, params.imgH, params.imgH)
text = torch.LongTensor(params.batchSize * 5)
length = torch.LongTensor(params.batchSize)
if params.cuda and torch.cuda.is_available():
criterion = criterion.cuda()
image = image.cuda()
text = text.cuda()
crnn = crnn.cuda()
if params.multi_gpu:
crnn = torch.nn.DataParallel(crnn, device_ids=range(params.ngpu))
image = Variable(image)
text = Variable(text)
length = Variable(length)
# -----------------------------------------------
"""
In this block
Setup optimizer
"""
if params.adam:
optimizer = optim.Adam(crnn.parameters(), lr=params.lr, betas=(params.beta1, 0.999))
elif params.adadelta:
optimizer = optim.Adadelta(crnn.parameters())
else:
optimizer = optim.RMSprop(crnn.parameters(), lr=params.lr)
# -----------------------------------------------
"""
In this block
Dealwith lossnan
NOTE:
I use different way to dealwith loss nan according to the torch version.
"""
if params.dealwith_lossnan:
if torch.__version__ >= '1.1.0':
"""
zero_infinity (bool, optional):
Whether to zero infinite losses and the associated gradients.
Default: ``False``
Infinite losses mainly occur when the inputs are too short
to be aligned to the targets.
Pytorch add this param after v1.1.0
"""
criterion = CTCLoss(zero_infinity = True)
else:
"""
only when
torch.__version__ < '1.1.0'
we use this way to change the inf to zero
"""
crnn.register_backward_hook(crnn.backward_hook)
# -----------------------------------------------
# def val(net, criterion):
# print('Start val')
# for p in crnn.parameters():
# p.requires_grad = False
# net.eval()
# val_iter = iter(val_loader)
# i = 0
# n_correct = 0
# loss_avg = utils.averager() # The blobal loss_avg is used by train
# max_iter = len(val_loader)
# for i in range(max_iter):
# data = val_iter.next()
# i += 1
# cpu_images, cpu_texts = data
# text, length = converter.words_rep(labels_str = cpu_texts, max_out_chars = 20, batch_size = params.batchSize, device = device)
# batch_size = cpu_images.size(0)
# utils.loadData(image, cpu_images)
# # t, l = converter.encode(cpu_texts)
# # utils.loadData(text, t)
# # utils.loadData(length, l)
# preds = crnn(image)
# preds_size = Variable(torch.LongTensor([preds.size(0)] * batch_size))
# cost = criterion(preds, text, preds_size, length) / batch_size
# loss_avg.add(cost)
# _, preds = preds.max(2)
# preds = preds.transpose(1, 0).contiguous().view(-1)
# sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
# print(sim_preds.shape)
# cpu_texts_decode = []
# for i in cpu_texts:
# cpu_texts_decode.append(i.decode('utf-8', 'strict'))
# for pred, target in zip(sim_preds, cpu_texts_decode):
# if pred == target:
# n_correct += 1
# raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:params.n_val_disp]
# for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts_decode):
# print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))
# accuracy = n_correct / float(max_iter * params.batchSize)
# print('Val loss: %f, accuracy: %f' % (loss_avg.val(), accuracy))
def val(net, criterion, max_iter=100):
print('Start val')
for p in crnn.parameters():
p.requires_grad = False
net.eval()
val_iter = iter(val_loader)
i = 0
n_correct = 0
loss_avg = utils.averager()
max_iter = len(val_loader)
for i in range(max_iter):
data = val_iter.next()
i += 1
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
# t, l = converter.encode(cpu_texts)
# utils.loadData(text, t)
# utils.loadData(length, l)
preds = crnn(image)
preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
cost = criterion(preds, text, preds_size, length) / batch_size
loss_avg.add(cost)
_, preds = preds.max(2)
preds = preds.squeeze(2)
preds = preds.transpose(1, 0).contiguous().view(-1)
sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
for pred, target in zip(sim_preds, cpu_texts):
if pred == target.lower():
n_correct += 1
raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:opt.n_test_disp]
for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))
accuracy = n_correct / float(max_iter * opt.batchSize)
print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
def train(net, criterion, optimizer, train_iter):
for p in crnn.parameters():
p.requires_grad = True
crnn.train()
data = train_iter.next()
cpu_images, cpu_texts = data
text, length = converter.words_rep(labels_str = cpu_texts, max_out_chars = 20, batch_size = params.batchSize, device = device)
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
# t, l = converter.encode(cpu_texts)
# utils.loadData(text, t)
# utils.loadData(length, l)
preds = crnn(image)
preds_size = Variable(torch.LongTensor([preds.size(0)] * batch_size))
# print("Label: ", text[0], '\nOutput: ', torch.argmax(preds, 2)[:, 0])
cost = criterion(preds, text, preds_size, length) / batch_size
optimizer.zero_grad()
cost.backward()
optimizer.step()
return cost
if __name__ == "__main__":
for epoch in range(params.nepoch):
train_iter = iter(train_loader)
i = 0
while i < len(train_loader):
cost = train(crnn, criterion, optimizer, train_iter)
loss_avg.add(cost)
i += 1
if i % params.displayInterval == 0:
print('[%d/%d][%d/%d] Loss: %f' %
(epoch, params.nepoch, i, len(train_loader), loss_avg.val()))
loss_avg.reset()
if i % params.valInterval == 0:
val(crnn, criterion)
# do checkpointing
if i % params.saveInterval == 0:
torch.save(crnn.state_dict(), '{0}/netCRNN_{1}_{2}.pth'.format(params.expr_dir, epoch, i))