-
Notifications
You must be signed in to change notification settings - Fork 16
/
convert_hf_checkpoint.py
141 lines (111 loc) · 4.9 KB
/
convert_hf_checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import gc
import json
import shutil
import sys
from pathlib import Path
import torch
# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
from lit_llama.model import LLaMA, LLaMAConfig
from lit_llama.utils import EmptyInitOnDevice
@torch.no_grad()
def convert_hf_checkpoint(
*,
output_dir: Path = Path("/home/dagaa/Srijith/LLaMA_7B/Alpaca_PY"),
checkpoint_dir: Path = Path("/home/dagaa/Srijith/LLaMA_7B/Alpaca"),
model_size: str = "7B",
dtype: str = "float32",
verify: bool = False,
) -> None:
"""
Perform the reverse operation of: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
"""
output_dir.mkdir(parents=True, exist_ok=True)
# the tokenizer is the same for all model sizes, so we store it in the parent dir
shutil.copy(checkpoint_dir / "tokenizer.model", output_dir.parent)
dt = getattr(torch, dtype, None)
if not isinstance(dt, torch.dtype):
raise ValueError(f"{dtype} is not a valid dtype.")
dtype = dt
print("Initializing lit-llama")
config = LLaMAConfig.from_name(model_size)
with EmptyInitOnDevice(device="cpu", dtype=dtype):
model = LLaMA(config)
qkv_size = model.transformer.h[0].attn.c_attn.weight.shape[0] // 3
# initialize a new empty state dict to hold our new weights
sd = model.state_dict()
# Load the json file containing weight mapping
pytorch_bin_map_json_path = checkpoint_dir / "pytorch_model.bin.index.json"
with open(pytorch_bin_map_json_path) as json_map:
bin_index = json.load(json_map)
bin_files = set(el for el in bin_index["weight_map"].values())
def permute(w):
dim = config.n_embd
return (
w.view(config.n_head, 2, dim // config.n_head // 2, dim)
.transpose(1, 2)
.reshape(dim, dim)
)
weight_map = {
"self_attn.o_proj.weight": "attn.c_proj.weight",
"self_attn.q_proj.weight": "attn.c_attn.weight",
"self_attn.k_proj.weight": "attn.c_attn.weight",
"self_attn.v_proj.weight": "attn.c_attn.weight",
"mlp.gate_proj.weight": "mlp.c_fc1.weight",
"mlp.up_proj.weight": "mlp.c_fc2.weight",
"mlp.down_proj.weight": "mlp.c_proj.weight",
"input_layernorm.weight": "rms_1.scale",
"post_attention_layernorm.weight": "rms_2.scale",
"model.embed_tokens.weight": "transformer.wte.weight",
"model.norm.weight": "transformer.ln_f.scale",
"lm_head.weight": "lm_head.weight"
}
for bin_file in bin_files:
print("Processing", bin_file)
hf_weights = torch.load(checkpoint_dir / bin_file, map_location="cpu")
for name, param in hf_weights.items():
param = param.to(dtype=dtype)
if "rotary_emb.inv_freq" in name:
continue
if "model.layers" in name:
block_id = int(name.split(".")[2])
from_name = ".".join(name.split(".")[3:])
to_name = weight_map[from_name]
if "q_proj" in name:
sd[f"transformer.h.{block_id}.{to_name}"][:qkv_size] = permute(param)
elif "k_proj" in name:
sd[f"transformer.h.{block_id}.{to_name}"][qkv_size:-qkv_size] = permute(param)
elif "v_proj" in name:
sd[f"transformer.h.{block_id}.{to_name}"][-qkv_size:] = param
else:
sd[f"transformer.h.{block_id}.{to_name}"].copy_(param)
else:
if ('lm_head.weight' in name) or ('model.embed_tokens.weight' in name): # added tis exta condition becuase the alpaca weights from stanford alpaca has an extra dimension
sd[weight_map[name]].copy_(param[:32000,:])
else:
sd[weight_map[name]].copy_(param)
del hf_weights
gc.collect()
print(f"Saving to disk at {output_dir}")
torch.save(model.state_dict(), output_dir / "lit-llama.pth")
if verify:
try:
from transformers import LlamaForCausalLM
except ImportError:
raise ImportError("verify=True requires transformers to be installed, please `pip install transformers`")
print("Verifying...")
token_sample = torch.randint(0, config.vocab_size, size=(1, config.block_size), dtype=torch.int64)
out = model(token_sample)
del model
gc.collect()
print("Loading original model for comparison")
model_hf = LlamaForCausalLM.from_pretrained(checkpoint_dir)
out_hf = model_hf(token_sample)["logits"]
print("Comparing outputs")
assert out.device.type == out_hf.device.type
assert out.dtype == out_hf.dtype
assert torch.testing.assert_close(out, out_hf)
if __name__ == "__main__":
from jsonargparse import CLI
CLI(convert_hf_checkpoint)