-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathprepare_reconstructed_dataset.py
79 lines (72 loc) · 3.88 KB
/
prepare_reconstructed_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import argparse
import cv2
import numpy as np
import os
import torch
from einops import rearrange
from tqdm import tqdm
from torch.nn import functional as F
from torchvision import transforms
from PIL import Image
from models import VectorQuantizedVAE
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--data-root', type=str, default='data', help='data root for videos')
parser.add_argument('-o', '--output', type=str, default='outputs/reconstruction_dataset/', help='output path')
parser.add_argument('--ext', type=str, nargs='+', default=['mp4', 'avi', 'mpeg', 'wmv', 'mov', 'flv'], help='target extensions')
parser.add_argument('--ckpt', type=str, default='weights/vqvae/model.pth', help='checkpoint path for vqvae')
parser.add_argument('--device', type=str, default='cuda', help='device for reconstruction model')
return parser.parse_args()
def denormalize_batch_t(img_t, mean, std):
try:
assert(len(mean) == len(std))
assert(len(mean) == img_t.shape[1])
except:
print(f'Unmatched channels between image tensors and normalization mean and std. Got {img_t.shape[1]}, {len(mean)}, {len(std)}.')
img_denorm = torch.empty_like(img_t)
for t in range(img_t.shape[1]):
img_denorm[:, t, :, :] = (img_t[:, t, :, :].clone() * std[t]) + mean[t]
return img_denorm
if __name__ == '__main__':
args = parse_args()
cls_folders = list(filter(lambda p: os.path.isdir(os.path.join(args.data_root, p)), sorted(os.listdir(args.data_root))))
recons_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
print(f'Find {len(cls_folders)} classes: {cls_folders}')
model = VectorQuantizedVAE(3, 256, 512)
state_dict = torch.load('weights/vqvae/model.pt', map_location=args.device)
model.load_state_dict(state_dict, strict=True)
model.to(args.device)
for idx, cls_folder in enumerate(cls_folders, 1):
os.makedirs(os.path.join(args.output, cls_folder, 'original'), exist_ok=True)
video_list = list(filter(lambda fn: os.path.splitext(fn)[-1].lower()[1:] in args.ext, sorted(os.listdir(os.path.join(args.data_root, cls_folder)))))
for video in tqdm(video_list, desc='Extracting original frames'):
video_path = os.path.join(args.data_root, cls_folder, video)
vc = cv2.VideoCapture(video_path)
if vc.isOpened():
rval, frame = vc.read()
else:
rval = False
c = 1
while rval:
cv2.imwrite(os.path.join(args.output, cls_folder, 'original', f'{os.path.splitext(os.path.basename(video))[0]}_{c}.jpg'), frame)
c = c + 1
rval, frame = vc.read()
vc.release()
os.makedirs(os.path.join(args.output, cls_folder, 'recons'), exist_ok=True)
for image_fn in tqdm(sorted(os.listdir(os.path.join(args.output, cls_folder, 'original'))), desc='Reconstruction'):
img = Image.open(os.path.join(args.output, cls_folder, 'original', image_fn)).convert('RGB')
img = recons_transform(img).unsqueeze(0)
with torch.no_grad():
img = img.to(args.device)
recons, _, _ = model(img)
if recons.shape != img.shape:
recons = F.interpolate(recons, (img.shape[-2], img.shape[-1]), mode='nearest')
denorm_recons = denormalize_batch_t(recons, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
denorm_recons = rearrange(denorm_recons.squeeze(0).cpu().numpy(), 'c h w -> h w c')
recons_img = np.uint8(denorm_recons * 255.)
Image.fromarray(recons_img).save(os.path.join(args.output, cls_folder, 'recons', image_fn))
print(f'Finished {idx}/{len(cls_folders)}')
print(f'Finished. Results saved at {args.output}')