-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathpredict_trees.py
162 lines (128 loc) · 5.42 KB
/
predict_trees.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# -*- coding: utf-8 -*-
from os import path, listdir, mkdir
import numpy as np
from skimage.color import label2rgb
np.random.seed(1)
import random
random.seed(1)
import timeit
import cv2
import os
from multiprocessing import Pool
import lightgbm as lgb
from train_classifier import get_inputs
pred_folder = path.join('predictions')
test_pred_folder = path.join(pred_folder, 'masks/ensemble')
lgbm_models_folder = 'lgbm_models'
test_out_folders = ['lgbm_test_sub1']
color_out_folders = ['color_test_sub1']
DATA_THREADS = 8
num_split_iters = 1
folds_count = 30
pixels_threshold = 76
sep_count = 3
sep_thresholds = [0.6, 0.7, 0.8]
best_thrs = [0.3]
step_size=20
def process_images(step):
gbm_models = []
for it in range(num_split_iters):
for it2 in range(folds_count):
gbm_models.append(
lgb.Booster(model_file=path.join(lgbm_models_folder, 'gbm_model_{0}_{1}.txt'.format(it, it2))))
paramss = []
files = list(reversed(sorted(listdir(test_pred_folder))))
for filename in files[step:step + step_size]:
if path.isfile(path.join(test_pred_folder, filename)) and '.png' in filename:
paramss.append((filename, test_pred_folder, None))
inputs = []
inputs2 = []
labels = []
labels2 = []
separated_regions = []
results = [get_inputs(param[0], param[1]) for param in paramss]
for i in range(len(results)):
inp, lbl, inp2, lbl2, sep_regs = results[i]
inputs.append(inp)
inputs2.append(inp2)
labels.append(lbl)
labels2.append(lbl2)
separated_regions.append(sep_regs)
for sub_id in range(1):
bst_k = np.zeros((sep_count + 1))
removed = 0
replaced = 0
total_cnt = 0
im_idx = 0
empty_cnt = 0
for filename in files[step:step + step_size]:
if path.isfile(path.join(test_pred_folder, filename)) and '.png' in filename:
img_id = filename
inp = inputs[im_idx]
pred = np.zeros((inp.shape[0]))
pred2 = [np.zeros((inp2.shape[0])) for inp2 in inputs2[im_idx]]
for m in gbm_models:
if pred.shape[0] > 0:
pred += m.predict(inp)
for k in range(len(inputs2[im_idx])):
if pred2[k].shape[0] > 0:
pred2[k] += m.predict(inputs2[im_idx][k])
if pred.shape[0] > 0:
pred /= len(gbm_models)
for k in range(len(pred2)):
if pred2[k].shape[0] > 0:
pred2[k] /= len(gbm_models)
pred_labels = np.zeros_like(labels[im_idx], dtype='uint16')
clr = 1
for i in range(pred.shape[0]):
max_sep = -1
max_pr = pred[i]
for k in range(len(separated_regions[im_idx])):
if len(separated_regions[im_idx][k][i]) > 0:
pred_lvl2 = pred2[k][separated_regions[im_idx][k][i]]
if len(pred_lvl2) > 1 and pred_lvl2.mean() > max_pr:
max_sep = k
max_pr = pred_lvl2.mean()
break
if len(pred_lvl2) > 1 and pred_lvl2.max() > max_pr:
max_sep = k
max_pr = pred_lvl2.max()
if max_sep >= 0:
pred_lvl2 = pred2[max_sep][separated_regions[im_idx][max_sep][i]]
replaced += 1
for j in separated_regions[im_idx][max_sep][i]:
if pred2[max_sep][j] > best_thrs[sub_id]:
pred_labels[labels2[im_idx][max_sep] == j + 1] = clr
clr += 1
else:
removed += 1
else:
if pred[i] > best_thrs[sub_id]:
pred_labels[labels[im_idx] == i + 1] = clr
clr += 1
else:
removed += 1
bst_k[max_sep + 1] += 1
clr_labels = label2rgb(pred_labels, bg_label=0)
clr_labels *= 255
clr_labels = clr_labels.astype('uint8')
cv2.imwrite(path.join(pred_folder, color_out_folders[sub_id], img_id), clr_labels, [cv2.IMWRITE_PNG_COMPRESSION, 9])
total_cnt += pred_labels.max()
cv2.imwrite(path.join(pred_folder, test_out_folders[sub_id], filename[:-4]+".tif"), pred_labels)
im_idx += 1
print('total_cnt', total_cnt, 'removed', removed, 'replaced', replaced, 'empty:', empty_cnt)
print(bst_k)
if __name__ == '__main__':
t0 = timeit.default_timer()
os.makedirs(pred_folder, exist_ok=True)
for f in test_out_folders:
if not path.isdir(path.join(pred_folder, f)):
mkdir(path.join(pred_folder, f))
for f in color_out_folders:
if not path.isdir(path.join(pred_folder, f)):
mkdir(path.join(pred_folder, f))
steps = [step for step in range(0, 940, step_size)]
with Pool(processes=DATA_THREADS) as pool:
results = pool.map(process_images, steps)
elapsed = timeit.default_timer() - t0
print('Time: {:.3f} min'.format(elapsed / 60))