-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinvoice_recognition(no keys).py
237 lines (172 loc) · 7.75 KB
/
invoice_recognition(no keys).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 12 10:20:44 2020
@author: admin
"""
from pandas import DataFrame,ExcelWriter,to_datetime
import os
import re
from json import loads
from base64 import b64encode
from numpy import zeros
import fitz
import datetime
import time
##导入腾讯AI api
from tencentcloud.common import credential
from tencentcloud.common.profile.client_profile import ClientProfile
from tencentcloud.common.profile.http_profile import HttpProfile
from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException
from tencentcloud.ocr.v20181119 import ocr_client, models
from tkinter import filedialog,Tk,Label,Button,Menu,Entry,ttk
#定义函数,来自于官方文档
def excelFromPictures(path,picture):
SecretId = ""
SecretKey = ""
with open(picture,"rb") as f:
img_data = f.read()
img_base64 = b64encode(img_data)
cred = credential.Credential(SecretId, SecretKey) #ID和Secret从腾讯云申请
httpProfile = HttpProfile()
httpProfile.endpoint = "ocr.tencentcloudapi.com"
clientProfile = ClientProfile()
clientProfile.httpProfile = httpProfile
client = ocr_client.OcrClient(cred, "ap-shanghai", clientProfile)
req = models.VatInvoiceOCRRequest()
params = '{"ImageBase64":"' + str(img_base64, 'utf-8') + '"}'
req.from_json_string(params)
# false=0
try:
resp = client.VatInvoiceOCR(req)
# print(resp.to_json_string())
except TencentCloudSDKException as err:
print("识别",picture,"错误[",err,"]\n可重试")
##提取识别出的数据,并且生成json
result1 = loads(resp.to_json_string())
# print(result1)
# print(resp.to_json_string())
invoicedf = DataFrame(zeros(5).reshape(1,5),
columns=["发票代码","发票号码","开票日期","合计金额","小写金额"])
for item in result1['VatInvoiceInfos']:
if item["Name"] in ["发票代码","发票号码","开票日期","合计金额","小写金额"]:
invoicedf[item["Name"]] = item["Value"]
#
# writer = ExcelWriter(path+"/tables/" +re.match(".*\.",f.name).group()+"xlsx", engine='xlsxwriter')
# data.to_excel(writer,sheet_name = 'Sheet1', index=False,header = False)
# writer.save()
#
print("已经完成[" + f.name + "]的识别")
return invoicedf
def pyMuPDF_fitz():
'''
pdf转图片
'''
#picture_path = input("请输入表格图片路径:")
pdfPath = entry_filename1.get()
path = os.path.dirname(pdfPath)
os.chdir(path)
f_name = os.path.basename(pdfPath).split(".")[0]
imagePath = os.path.join(path,f_name+"-images")
startTime_pdf2img = datetime.datetime.now()#开始时间
angle = angleChosen.get()
zoom_num = zoomCoef.get()
# print("imagePath="+imagePath)
pdfDoc = fitz.open(pdfPath)
for pg in range(pdfDoc.pageCount):
page = pdfDoc[pg]
rotate = int(angle)
# 每个尺寸的缩放系数为1.3,这将为我们生成分辨率提高2.6的图像。
zoom_x = zoom_num #(1.33333333-->1056x816) (2-->1584x1224) #数字越大清晰度越高,但图片太大又无法上传至腾讯云
zoom_y = zoom_num
mat = fitz.Matrix(zoom_x, zoom_y).preRotate(rotate)
# mat = fitz.Matrix().preRotate(rotate)
pix = page.getPixmap(matrix=mat, alpha=False)
if not os.path.exists(imagePath):#判断存放图片的文件夹是否存在
os.makedirs(imagePath) # 若图片文件夹不存在就创建
pix.writePNG(imagePath+'/'+f_name+'-images_%s.png' % pg)#将图片写入指定的文件夹内
endTime_pdf2img = datetime.datetime.now()#结束时间
print('pdf已转换,用时%ds'%(endTime_pdf2img - startTime_pdf2img).seconds)
def batch():
'''
发票图片识别
'''
file_str = entry_filename2.get()
# print(file_str)
file_names = re.split(r"[{} ]",file_str)
# print(file_names)
file_names = [f.lstrip() for f in file_names if f not in [""," "]]
file_names = [f.rstrip() for f in file_names]
pictures_path = os.path.dirname(file_names[0])
path = os.path.dirname(pictures_path)
os.chdir(pictures_path)
f_name = pictures_path.split("/")[-1].split("-")[0]
# print(f_name)
pictures = [os.path.basename(f) for f in file_names]
table_path = os.path.join(path,"tables")
if not os.path.exists(table_path):
os.mkdir(table_path)
invoice_table = DataFrame(columns=["发票代码","发票号码","开票日期","合计金额","小写金额"])
for pic in pictures:
try:
invoicedf= excelFromPictures(path,pic)
invoice_table = invoice_table.append(invoicedf)
time.sleep(1)
except:
pass
invoice_table = invoice_table.reset_index(drop=True)
invoice_table['发票号码'] = invoice_table['发票号码'].str[2:]
invoice_table['合计金额'] = invoice_table['合计金额'].str[1:]
invoice_table['小写金额'] = invoice_table['小写金额'].str[1:]
invoice_table['开票日期'] = to_datetime(invoice_table['开票日期'],format = '%Y年%m月%d日').apply(lambda x : x.strftime('%Y%m%d'))
invoice_table.rename(columns={'开票日期':'发票日期', '合计金额':'税前金额',"小写金额":"价税合计"}, inplace = True)
invoice_table["税前金额"] = invoice_table["税前金额"].astype(float)#此处增加保存两位小数
invoice_table["价税合计"] = invoice_table["价税合计"].astype(float)
writer = ExcelWriter(path+"/tables/"+f_name+"-invoice_df.xlsx", engine='xlsxwriter')
invoice_table.to_excel(writer,sheet_name = 'Sheet1', index=True,header=True)
writer.save()
print("已完成发票识别,请打开"+path+"/tables查看")
window = Tk()
window.title('发票识别神器')
window.geometry('700x200')
def file_input_one():
filename = filedialog.askopenfilename(title='导入图片文件')
entry_filename1.insert('insert', filename)
def file_input_batch():
filename = filedialog.askopenfilenames(title='导入图片文件')
entry_filename2.insert('insert', filename)
menubar = Menu(window)
filemenu = Menu(menubar, tearoff=0)
menubar.add_cascade(label='File', menu=filemenu)
filemenu.add_command(label='Open_pdf', command=file_input_one)
filemenu.add_command(label='Open_images', command=file_input_batch)
window.config(menu=menubar)
l1 = Label(window, text="pdf转图片",font=("宋体", 10, 'bold'))
l1.grid(column=0, row=0)
entry_filename1 = Entry(window, width=30,font=("arial", 10))
entry_filename1.grid(column=0, row=1)
l3 = Label(window, text="旋转角度",font=("宋体", 10, 'bold'))
l3.grid(column=1, row=0)
angleChosen = ttk.Combobox(window, width=4) #3
angleChosen['values'] = (0,90,180,270) # 4
angleChosen.grid(column=1, row=1) # 5
angleChosen.current(0) # 6
l4 = Label(window, text="缩放系数",font=("宋体", 10, 'bold'))
l4.grid(column=2, row=0)
zoomCoef = Entry(window, width=4,font=("arial", 10))
zoomCoef.grid(column=2, row=1) # 5
b1 = Button(window, text="开始转换",command=pyMuPDF_fitz)
b1.grid(column=3, row=1)
l2 = Label(window, text="发票图片识别",font=("宋体", 10, 'bold'))
l2.grid(column=0, row=2)
entry_filename2 = Entry(window, width=30,font=("arial", 10))
entry_filename2.grid(column=0, row=3)
def test_batch():
file_str = entry_filename2.get()
print(file_str)
file_names = re.split(r"[{} ]",file_str)
print(file_names)
b2 = Button(window, text="开始识别",command=batch)
b2.grid(column=3, row=3)
tips = Label(window, text="注:图片名称中不允许有空格;缩放系书越大图片清晰度越高,但大小不要超过700k",font=("仿宋", 8))
tips.grid(column=0,row=4)
window.mainloop()