-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_backend.py
176 lines (127 loc) · 5.96 KB
/
model_backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import copy
import torch
import torch.onnx
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from PIL import Image
from torchvision import transforms
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
imsize = 512
def process_image(img_stream):
loader = transforms.Compose([
transforms.Resize(imsize), # нормируем размер изображения
transforms.CenterCrop(imsize),
transforms.ToTensor()]) # превращаем в удобный формат
image = Image.open(img_stream)
image = loader(image).unsqueeze(0)
return image.to(device, torch.float)
class ContentLoss(nn.Module):
def __init__(self, target,):
super(ContentLoss, self).__init__()
# we 'detach' the target content from the tree used
# to dynamically compute the gradient: this is a stated value,
# not a variable. Otherwise the forward method of the criterion
# will throw an error.
self.target = target.detach() # это константа. Убираем ее из дерева вычеслений
self.loss = F.mse_loss(self.target, self.target) # to initialize with something
def forward(self, input):
self.loss = F.mse_loss(input, self.target)
return input
def gram_matrix(input):
batch_size, h, w, f_map_num = input.size() # batch size(=1)
# b=number of feature maps
# (h,w)=dimensions of a feature map (N=h*w)
features = input.view(batch_size * h, w * f_map_num) # resise F_XL into \hat F_XL
G = torch.mm(features, features.t()) # compute the gram product
# we 'normalize' the values of the gram matrix
# by dividing by the number of element in each feature maps.
return G.div(batch_size * h * w * f_map_num)
class StyleLoss(nn.Module):
def __init__(self, target_feature):
super(StyleLoss, self).__init__()
self.target = gram_matrix(target_feature).detach()
self.loss = F.mse_loss(self.target, self.target) # to initialize with something
def forward(self, input):
G = gram_matrix(input)
self.loss = F.mse_loss(G, self.target)
return input
# Определим после каких уровней мы будем счиатать ошибки стиля,
# а после каких ошибки контента
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
class Normalization(nn.Module):
def __init__(self, mean, std):
super(Normalization, self).__init__()
# .view the mean and std to make them [C x 1 x 1] so that they can
# directly work with image Tensor of shape [B x C x H x W].
# B is batch size. C is number of channels. H is height and W is width.
self.mean = torch.tensor(mean).view(-1, 1, 1).to(device)
self.std = torch.tensor(std).view(-1, 1, 1).to(device)
def forward(self, img):
"""normalize img"""
return (img - self.mean) / self.std
content_layers_default = ['conv_4']
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
def get_style_model_and_losses(
cnn, normalization_mean, normalization_std, style_img, content_img, device,
content_layers=content_layers_default, style_layers=style_layers_default
):
print('Model start to build')
cnn = copy.deepcopy(cnn).to(device)
# normalization module
normalization = Normalization(
normalization_mean, normalization_std
).to(device)
# just in order to have an iterable access to or
# list of content/syle losses
content_losses = []
style_losses = []
# assuming that cnn is a nn.Sequential, so we make a new nn.Sequential
# to put in modules that are supposed to be activated sequentially
model = nn.Sequential(normalization)
i = 0 # increment every time we see a conv
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = f'conv_{i}'
elif isinstance(layer, nn.ReLU):
name = f'relu_{i}'
# The in-place version doesn't play very nicely with the
# ContentLoss and StyleLoss we insert below.
# So we replace with out-of-place ones here.
layer = nn.ReLU(inplace=False) # Переопределим relu уровень.
elif isinstance(layer, nn.MaxPool2d):
name = f'pool_{i}'
elif isinstance(layer, nn.BatchNorm2d):
name = f'bn_{i}'
else:
raise RuntimeError(f'Unowned layer: {layer.__class__.__name__}')
model.add_module(name, layer)
if name in content_layers:
# add content loss:
target = model(content_img).detach()
content_loss = ContentLoss(target)
model.add_module(f'content_loss_{i}', content_loss)
content_losses.append(content_loss)
if name in style_layers:
# add style loss:
target_feature = model(style_img).detach()
style_loss = StyleLoss(target_feature)
model.add_module(f'style_loss_{i}', style_loss)
style_losses.append(style_loss)
# now we trim off the layers after the last content and style losses
# выбрасываем все уровни после последенего styel loss или content loss
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
break
model = model[:(i + 1)]
print('Model end to build')
return model, style_losses, content_losses
def get_input_optimizer(input_img):
"""his line to show that input is a parameter that requires a gradient
добоваляет содержимое тензора катринки в список
изменяемых оптимизатором параметров
"""
optimizer = optim.LBFGS([input_img.requires_grad_()])
return optimizer