Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Have to clear tensorflow graphs. #17

Open
afghani-iitkgp opened this issue May 27, 2020 · 0 comments
Open

Have to clear tensorflow graphs. #17

afghani-iitkgp opened this issue May 27, 2020 · 0 comments

Comments

@afghani-iitkgp
Copy link

afghani-iitkgp commented May 27, 2020

ValueError: Fetch argument <tf.Variable 'conv1/kernel:0' shape=(7, 7, 3, 64) dtype=float32_ref> cannot be interpreted as a Tensor.
(Tensor Tensor("conv1/kernel:0", shape=(7, 7, 3, 64), dtype=float32_ref) is not an element of this graph.)

I was using this model for face similarity project. But I did encounter above "ValueError".
I overcame by clearing the session.
My code is:

def faceRecoModel(input_shape):
    # Clear previous session
    K.clear_session()

    # Define the input as a tensor with shape input_shape
    X_input = Input(input_shape)

    # Zero-Padding
    X = ZeroPadding2D((3, 3))(X_input)
    .
    # First Block
    X = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(X)
    X = BatchNormalization(axis=1, name='bn1')(X)
    X = Activation('relu')(X)

    # Zero-Padding + MAXPOOL
    X = ZeroPadding2D((1, 1))(X)
    X = MaxPooling2D((3, 3), strides=2)(X)

    # Second Block
    X = Conv2D(64, (1, 1), strides=(1, 1), name='conv2')(X)
    X = BatchNormalization(axis=1, epsilon=0.00001, name='bn2')(X)
    X = Activation('relu')(X)

    # Zero-Padding + MAXPOOL
    X = ZeroPadding2D((1, 1))(X)

    # Third Block
    X = Conv2D(192, (3, 3), strides=(1, 1), name='conv3')(X)
    X = BatchNormalization(axis=1, epsilon=0.00001, name='bn3')(X)
    X = Activation('relu')(X)

    # Zero-Padding + MAXPOOL
    X = ZeroPadding2D((1, 1))(X)
    X = MaxPooling2D(pool_size=3, strides=2)(X)

    # Inception 1: a/b/c
    X = inception_block_1a(X)
    X = inception_block_1b(X)
    X = inception_block_1c(X)

    # Inception 2: a/b
    X = inception_block_2a(X)
    X = inception_block_2b(X)

    # Inception 3: a/b
    X = inception_block_3a(X)
    X = inception_block_3b(X)

    # Top layer
    X = AveragePooling2D(pool_size=(3, 3), strides=(1, 1), data_format='channels_first')(X)
    X = Flatten()(X)
    X = Dense(128, name='dense_layer')(X)

    # L2 normalization
    X = Lambda(lambda x: K.l2_normalize(x, axis=1))(X)

    # Create model instance
    model = Model(inputs=X_input, outputs=X, name='FaceRecoModel')

    return model
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant