Skip to content

Latest commit

 

History

History
146 lines (116 loc) · 7.23 KB

README.md

File metadata and controls

146 lines (116 loc) · 7.23 KB

PLDG

This repo is the official implementation of the TMI2024 paper "Prompt-driven Latent Domain Generalization for Medical Image Classification". [Journal] [conference] [BibTex]

Introduction

[abstract] Deep learning models for medical image analysis easily suffer from distribution shifts caused by dataset artifacts bias, camera variations, differences in the imaging station, etc., leading to unreliable diagnoses in realworld clinical settings. Domain generalization (DG) methods, which aim to train models on multiple domains to perform well on unseen domains, offer a promising direction to solve the problem. However, existing DG methods assume domain labels of each image are available and accurate, which is typically feasible for only a limited number of medical datasets. To address these challenges, we propose a novel DG framework for medical image classification without relying on domain labels, called Prompt-driven Latent Domain Generalization (PLDG). PLDG consists of unsupervised domain discovery and prompt learning. This framework first discovers pseudo domain labels by clustering the bias-associated style features, then leverages collaborative domain prompts to guide a Vision Transformer to learn knowledge from discovered diverse domains. To facilitate cross-domain knowledge learning between different prompts, we introduce a domain prompt generator that enables knowledge sharing between domain prompts and a shared prompt. A domain mixup strategy is additionally employed for more flexible decision margins and mitigates the risk of incorrect domain assignments. Extensive experiments on three medical image classification tasks and one debiasing task demonstrate that our method can achieve comparable or even superior performance than conventional DG algorithms without relying on domain labels.

alt text

Installation

Create the environment and install packages

conda create -n env_name python=3.8 -y
conda activate env_name
pip install -r requirements.txt

Preparing datasets

Skin Datasets: please refer to the repo of our previous work.

Camelyon17 Benchmark: download the dataset from here

APTOS (DR) Datasets: download the dataset from here

EyePACS (DR) Datasets: download the dataset from here

Messidor-1 (DR) Datasets: download the dataset from here

Messidor-2 (DR) Datasets: download the dataset from here

Put each dataset in a folder under the PLDG/domainbed/data directory as follows:

data
├── ISIC2019_train
│   ├── clean
│   │   ├──ben
│   │   ├──mel
│   ├── dark_corner
│   ├── gel_bubble
│   ├── ...

├── DG_DR_Classification
│   ├──aptos2019-blindness-detection
│   │   ├──0
│   │   ├──1
│   │   ├──2
│   │   ├──3
│   │   ├──3
│   ├──EyePACS
│   │   ├──...
│   ├──Messidor-1
│   │   ├──...
│   ├──Messidor-2
│   │   ├──...

├── camelyon17_v1.0

Training

Our benchmark is modified based on DomainBed, please refer to DomainBed Readme for more details on commands running jobs. Here are some examples to train and test on the three medical datasets.

Training PLDG on three out of four DR classification datasets and testing on the remaining one

CUDA_VISIBLE_DEVICES=1 python -m domainbed.scripts.train_dr_latent --data_dir=./domainbed/data/ --steps 1000 --dataset Latent_DR_Dataset --test_envs 0 --val_envs 1 \
--algorithm Latent_EPVT --output_dir results/exp --hparams '{"lr":5e-6, "lr_classifier": 5e-5,"batch_size":130,"wd_classifier":1e-5,"prompt_dim":10,"seed":1}' --exp 'latent_dr_eyepacs_p10' --clustering True
 CUDA_VISIBLE_DEVICES=1 python -m domainbed.scripts.train_dr_latent --data_dir=./domainbed/data/ --steps 5697 --dataset Latent_DR_Dataset --test_envs 2 --val_envs 1 \
--algorithm Latent_EPVT --output_dir results/exp --hparams '{"lr":5e-6, "lr_classifier": 5e-5,"batch_size":130,"wd_classifier":1e-5}' --exp 'latent_dr_m2' --clustering True 
CUDA_VISIBLE_DEVICES=1 python -m domainbed.scripts.train_dr_latent --data_dir=./domainbed/data/ --steps 5697 --dataset Latent_DR_Dataset --test_envs 3 --val_envs 1 \
--algorithm Latent_EPVT --output_dir results/exp --hparams '{"lr":5e-7, "lr_classifier": 5e-6,"batch_size":130,"wd_classifier":1e-5}' --exp 'latent_dr_aptos_5e-7' --clustering True

Training PLDG on Camelyon17-wilds dataset

CUDA_VISIBLE_DEVICES=1 python -m domainbed.scripts.train_cam17 --data_dir=./domainbed/data/ --steps 5900 --dataset DG_Dataset --test_env 0 --algorithm Latent_EPVT --output_dir \
results/exp --hparams '{"lr": 5e-7, "lr_classifier": 5e-7,"batch_size":130,"wd_classifier": 1e-4, "prompt_dim":4}' --exp 'epvt_5e-7_5e-7_1e-4_sne_exp' --clustering True \
 --use_domain_labels False --loss-disc-weight --num-clustering 4

Citation

@article{yan2024prompt, title={Prompt-driven Latent Domain Generalization for Medical Image Classification}, author={Yan, Siyuan and Liu, Chi and Yu, Zhen and Ju, Lie and Mahapatra, Dwarikanath and Betz-Stablein, Brigid and Mar, Victoria and Janda, Monika and Soyer, Peter and Ge, Zongyuan}, journal={arXiv preprint arXiv:2401.03002}, year={2024} }

```bibtex
@inproceedings{yan2023epvt,
  title={EPVT: Environment-Aware Prompt Vision Transformer for Domain Generalization in Skin Lesion Recognition},
  author={Yan, Siyuan and Liu, Chi and Yu, Zhen and Ju, Lie and Mahapatra, Dwarikanath and Mar, Victoria and Janda, Monika and Soyer, Peter and Ge, Zongyuan},
  booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
  pages={249--259},
  year={2023},
  organization={Springer}
}

## Acknowlegdement

This code is built on [DomainBed](https://github.com/facebookresearch/DomainBed), [DoPrompt](https://github.com/zhengzangw/DoPrompt), [EPVT](https://github.com/SiyuanYan1/EPVT-and-Skin-DG-benchamrk), and [dg_mmld](https://github.com/mil-tokyo/dg_mmld). We thank the authors for sharing their codes.