-
Notifications
You must be signed in to change notification settings - Fork 11
/
docsROMSimulation.html
2722 lines (2026 loc) · 127 KB
/
docsROMSimulation.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="">
<meta name="author" content="">
<title>SimVascular Docs</title>
<link href="css/bootstrap.css" rel="stylesheet" type="text/css" />
<link href="css/shop-item.css" rel="stylesheet" type="text/css" />
<link href="css/codestyle.css" rel="stylesheet" type="text/css" />
<link rel="stylesheet" href="font-awesome-4.1.0/css/font-awesome.min.css">
<link rel="stylesheet" href="https://code.ionicframework.com/ionicons/1.5.2/css/ionicons.min.css">
<link rel="shortcut icon" href="img/favicon.ico">
<!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->
<!-- WARNING: Respond.js doesn't work if you view the page via file:// -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body>
<!-- Navigation -->
<nav class="navbar navbar-inverse navbar-fixed-top" role="navigation">
<div class="container">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-main-collapse">
<i class="fa fa-bars" id="barIcon"></i>
</button>
<a class="navbar-brand" id="brandName" href="index.html">
<img src="img/svlogo/svLogoSmallText.png" alt="...">
</a>
</div>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse navbar-right navbar-main-collapse">
<ul class="nav navbar-nav">
<!-- USER GUIDES -->
<li>
<a href="#" id="dropdownMenu1" data-toggle="dropdown">
<b><span class="fa fa-user"></span> User Guides</b>
</a>
<ul class="dropdown-menu" role="menu" aria-labelledby="dropdownMenu1">
<li role="presentation" class="divider"></li>
<li role="presentation"><a role="menuitem" tabindex="-1" href="docsQuickGuide.html"><b><span class="icon ion-ios7-bolt"></span> Getting Started</b></a></li>
<li role="presentation" class="divider"></li>
<li role="presentation"><a role="menuitem" tabindex="-1" href="docsModelGuide.html"><b><span class="icon ion-settings"></span> Modeling</b></a></li>
<li role="presentation"><a role="menuitem" tabindex="-1" href="docsMeshing.html"><b><span class="icon ion-ios7-keypad"></span> Meshing</b></a></li>
<li role="presentation"><a role="menuitem" tabindex="-1" href="docsFlowSolver.html"><b><span class="icon ion-play"></span> Simulation</b></a></li>
<li role="presentation"><a role="menuitem" tabindex="-1" href="docssvFSI.html"><b><span class="icon ion-plus-round"></span> svFSI</b></a></li>
<li role="presentation"><a role="menuitem" tabindex="-1" href="docsSimCardio.html"><b><span class="icon ion-plus-round"></span> SimCardio</b></a></li>
<li role="presentation"><a role="menuitem" tabindex="-1" href="docsROMSimulation.html"><b><span class="icon ion-plus-round"></span> ROM Simulation</b></a></li>
<li role="presentation"><a role="menuitem" tabindex="-1" href="docsGenBC.html"><b><span class="icon ion-refresh"></span> GenBC</b></a></li>
<li role="presentation"><a role="menuitem" tabindex="-1" href="docsPythonInterface.html"><b><span class="icon ion-refresh"></span> Python Interface</b></a></li>
<li role="presentation"><a role="menuitem" tabindex="-1" href="docsReferences.html"><b><span class="icon ion-refresh"></span> References </b></a></li>
</ul>
</li>
<!-- CLINCAL CASES -->
<li>
<a href="#" id="dropdownMenu1" data-toggle="dropdown">
<b><i class="fa fa-stethoscope"></i> Clinical Cases</b>
</a>
<ul class="dropdown-menu" role="menu" aria-labelledby="dropdownMenu1">
<li role="presentation"><a role="menuitem" tabindex="-1" href="clinicalCase3.html"><b><span class="fa fa-user-md"></span> Coronary Normal</b></a></li>
<li role="presentation"><a role="menuitem" tabindex="-1" href="clinicalCase1.html"><b><span class="fa fa-user-md"></span> Aortofemoral Normal - 1</b></a></li>
<li role="presentation"><a role="menuitem" tabindex="-1" href="clinicalCase2.html"><b><span class="fa fa-user-md"></span> Aortofemoral Normal - 2</b></a></li>
<li role="presentation"><a role="menuitem" tabindex="-1" href="clinicalCase4.html"><b><span class="fa fa-user-md"></span> Healthy Pulmonary</b></a></li>
<li role="presentation"><a role="menuitem" tabindex="-1" href="https://simtk.org/projects/sv_tests"><b><span class="fa fa-user-md"></span> All demo projects</b></a></li>
</ul>
</li>
<!-- DEVELOPER GUIDES -->
<li>
<a href="#" id="dropdownMenu1" data-toggle="dropdown">
<b><span class="fa fa-caret-square-o-right"></span> Developer Guides</b>
</a>
<ul class="dropdown-menu" role="menu" aria-labelledby="dropdownMenu1">
<li role="presentation"><a role="menuitem" tabindex="-1" href="https://github.com/SimVascular/SimVascular/wiki/wiki_for_developers"><b><span class="fa fa-file-text-o"></span> Compile Source Code</b></a></li>
</ul>
</li>
<!-- svCOMMUNITY -->
<li>
<a href="#" id="dropdownMenu1" data-toggle="dropdown">
<b><i class="fa fa-users"></i> svCommunity</b>
</a>
<ul class="dropdown-menu" role="menu" aria-labelledby="dropdownMenu1">
<li role="presentation"><a role="menuitem" tabindex="-1" href="https://simtk.org/forums/viewforum.php?f=188"><b><span class="fa fa-users"></span> Public Forum</b></a></li>
<li role="presentation" class="divider"></li>
<li role="presentation"><a role="menuitem" tabindex="-1" href="https://github.com/SimVascular/SimVascular/wiki/"><b><span class="fa fa-file-text-o"></span> Wiki</b></a></li>
<li role="presentation" class="divider"></li>
<li role="presentation"><a role="menuitem" tabindex="-1" href="https://simtk.org/mailman/listinfo/simvascular-news"><b><span class="fa fa-sign-in"></span> Join News Mailing List</b></a></li>
<li role="presentation"><a role="menuitem" tabindex="-1" href="https://simtk.org/pipermail/simvascular-news/"><b><span class="fa fa-pencil-square-o"></span> News Mailing List Archive</b></a></li>
<li role="presentation"><a role="menuitem" tabindex="-1" href="https://github.com/SimVascular/SimVascular/issues"><b><span class="fa fa-bug"></span> Report bugs and request features</b></a></li>
</ul>
</li>
<!-- REFERENCES -->
<li>
<a href="docsRefs.html" id="dropdownMenu1" >
<b><span class="icon ion-document-text"></span>References</b>
</a>
</li>
<!-- Archives -->
<li>
<a href="#" id="dropdownMenu1" data-toggle="dropdown">
<b> Archives</b>
</a>
<ul class="dropdown-menu" role="menu" aria-labelledby="dropdownMenu1">
<li role="presentation"><a role="menuitem" tabindex="-1" href="archiveQuickGuideSV2.html"><b>SimVascular 2.0</b></a></li>
</ul>
</li>
<!-- <li><a href="docsQuickGuide.html" id="btnQuickGuide"><b><span class="icon ion-ios7-bolt"></span> Quick Guide</b></a></li>
<li><a href="docsModelGuide.html" id="btnModelGuide"><b><span class="icon ion-settings"></span> Modeling</b></a></li>
<li><a href="docsMeshing.html" id="btnMeshing"><b><span class="icon ion-ios7-keypad"></span> Meshing</b></a></li>
<li><a href="docsPresolver.html" id="btnPresolver"><b><span class="icon ion-log-in"></span> svPre</b></a></li>
<li><a href="docsFlowSolver.html" id="btnFlowSolver"><b><span class="icon ion-play"></span> svSolver</b></a></li>
<li><a href="docsRefs.html" id="btnRefs"><b><span class="icon ion-document-text"></span> References</b></a></li>
<li><a href="clinicalCase1.html" id="btnRefs"><b>Case Studies</b></a></li> -->
</ul>
</div>
<!-- /.navbar-collapse -->
</div>
<!-- /.container -->
</nav>
<!-- Page Content -->
<!--Nav Bar -->
<div class="row">
<div class="col-xs-1 col-sm-1 hidden-md hidden-lg">
</div>
<!-- ONE COLUMN OF SPACE -->
<nav class="hidden-xs hidden-sm col-md-2 col-lg-2 bs-docs-sidebar">
<ul id="sidebar" class="nav nav-stacked fixed manROMSimulation"> <p><h3>ROM Simulation Guide</h3></p>
<li><a href="#intro">Introduction</a></li>
<li><a href="#tool">ROM Simulation Tool</a>
<ul class="nav nav-stacked">
<li><a href="#mesh-panel"> Mesh Panel</a></li>
<li><a href="#basic-panel">Basic Parameters Panel</a></li>
<li><a href="#bcs-panel">Inlet and Outlet BCs Panel</a></li>
<li><a href="#wall-props-panel">Wall Properties Panel</a></li>
<li><a href="#solver-params-panel">Solver Parameters Panel</a></li>
<li><a href="#create-files-panel">Create Files and Run Simulation Panel</a></li>
<li><a href="#convert-results-panel">Convert Results Panel</a></li>
<li><a href="#tool-tutorial">Tutorial</a></li>
<li><a href="#tool-refs">References</a></li>
</ul>
</li>
<li><a href="#1d-solver">1D Solver</a>
<ul class="nav nav-stacked">
<li><a href="#1d-solver-theory">Theory</a></li>
<li><a href="#1d-solver-user-guide">User Guide</a></li>
<li><a href="#1d-solver-input-file">Input File Format</a></li>
<li><a href="#1d-solver-example-bifurcation-rcr">Example - Bifurcation with RCR BCs</a></li>
<li><a href="#1d-solver-example-tube-resistance">Example - Tube with resistance BCs</a></li>
<li><a href="#1d-solver-refs">References</a></li>
</ul>
</li>
<li><a href="#0d-solver">0D Solver</a>
<ul class="nav nav-stacked">
<li><a href="#0d-solver-theory">Theory</a></li>
<li><a href="#0d-solver-refs">References</a></li>
</ul>
</li>
<h3>Download</h3>
</ul>
</nav>
<!--Main Content -->
<div class="col-xs-10 col-sm-10 col-md-9 col-lg-9" id="manualContent">
<!-- ACTUAL CONTENT -->
<div class="manROMSimulation"><section id="intro" class="group"><h1>Introduction</h1>
<p>The SimVascular <strong>ROM Simulation Tool</strong> is used to interactively create the geometry, boundary conditions and solver
parameters needed to execute a reduced-order model (ROM) simulation of 3D vascular networks. The reduced-order models
implemented in SimVascular use computationally inexpensive mathematical representations and reduced model dimensionality
to approximate the flow and pressure quantities in a cardiovascular system.</p>
<p>The SimVascular <strong>sv1DSolver</strong> solves for blood pressure and flow in deformable one-dimensional hemodynamic networks.
These equations offer a relatively efficient means to reproduce realistic wave propagation phenomemon in vascular networks.
One-dimensional networks can be coupled to both 0D lumped parameter models and to more complex 3D flow simulations as boundary
conditions.</p>
<p>The SimVascular <strong>svZeroDSolver</strong> solves for blood pressure and flow in a zero-dimensional spatial representation of
a vascular network modeled as an electrical circuit. The resistive, elastic and inertial properties of blood flow through
vessels are lumped into electrical elements. Although no spatial distribution of flow quantities is provided
this ROM can be complex enough to provide a good approximatation of circulatory dynamics.</p>
<h2>Centerlines Geometry</h2>
<p>The geometry of the one-dimensional networks used by the <strong>sv1DSolver</strong> is based on the centerlines computed from the surface
of a 3D geometric model. The 3D geometric model is created from image data using the typical
SimVascular <a href="docsModelGuide.html"> modeling workflow </a>.</p>
<p>Centerlines represent a 1D characterization of blood vessel geometry. The centerlines are computed for a 3D surface using
the <a href="http://www.vmtk.org/tutorials/Centerlines.html"> Vascular Modeling Toolkit </a>. The computation solves a wave propagation
problem using a source point representing the start of the centerlines and target points representing the ends of the centerlines.
The source and target points are selected from the model caps defined in the SimVascular <strong>Modeling Tool</strong>.</p>
<p><br>
<figure>
<img src="documentation/rom_simulation/images/model-geom.png" style="float: left; width: 30%; margin-right: 1%; margin-bottom: 0.5em;">
<img src="documentation/rom_simulation/images/centerlines.png" style="float: left; width: 30%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
<figcaption> <i>The centerlines (right) computed from a 3D geometric model of the aorta and femoral arteries (left). </i></figcaption>
</figure>
<br></p>
<h3>Network Geometry and 1D Simulation Mesh</h3>
<p>The centerlines geometry is used to define network <strong>nodes</strong> at vessel inlets, outlets and branching points. A number of cylindrical
<strong>segments</strong> are defined representing the length and diameter between vessel <strong>nodes</strong>.</p>
<p><br>
<figure>
<img class="svImg svImgSm" src="documentation/rom_simulation/images/vessel-segments.png">
<figcaption class="svCaption"> The cylindrical segments representing vessel length and diameter between branching points. </figcaption>
</figure>
<br></p>
<p>Segments are then discretized into a mesh of finite elements in order to numerically solve the 1D equations of fluid flow in
deformable vessels.</p>
<p><br>
<figure>
<img class="svImg svImgMd" src="documentation/rom_simulation/images/segment-elements.png">
<figcaption class="svCaption"> A segment is discretized into a mesh of finite elements. </figcaption>
</figure>
<br></p>
<h3>Network Connectivity and 0D Simulation Circuit</h3>
<p>The centerlines geometry is also used to define the connectivty for a 0D electrical circuit. </p>
<h2>Units</h2>
<p>All model quantities and associated boundary conditions are specified in CGS units.</p>
</section>
<section id="tool" class="group"><h1>ROM Simulation Tool</h1>
<p>The SimVascular <strong>ROM Simulation Tool</strong> is used to interactively create an input file defining the geometry, boundary conditions,
material properties and solver parameters needed to execute a reduced-order model (ROM) solver simulation.
A <strong>ROM Simulation Tool</strong> instance is created by
right-clicking on the <strong>ROMSimulations</strong> node under the <strong>SV Data Manager</strong>. Selecting the <strong>Create ROM Simulation job</strong>
menu item displays a popup window.</p>
<p><br>
<figure>
<img class="svImg svImgSm" src="documentation/rom_simulation/tool/images/create-job.png">
<figcaption class="svCaption"> The <b>Create ROM Simulation Job</b> popup menu. </figcaption>
</figure></p>
<p>Use the <strong>Select Model</strong> list to select the 3D geometric surface model used to create centerlines. The list contains the names of
all models created by any SimVascular <strong>Modeling Tool</strong> instance. Type in a job name used to identify the <strong>Simulations1d Tool</strong> instance
and to name the files and directories stored under the SimVascular project’s <strong>Simulations1d</strong> directory. Selecting <strong>OK</strong> creates
an <strong>ROM Simulation Tool</strong> instance node under the <strong>SV Data Manager</strong>. Selecting this instance displays the
<strong>ROM Simulation Tool</strong> panel.</p>
<p><br>
<figure>
<p style="clear: both;">
<img class="svImg svImgSm" src="documentation/rom_simulation/tool/images/panel.png">
<figcaption class="svCaption"> The ROM Simulation Tool panel. </figcaption>
</figure>
<br></p>
<p>The panel contains seven sub-panels used to create or input a specific category of data needed to execute a reduced-order model solver simulation.
<ul style="list-style-type:none;">
<li> Mesh </li>
<li> Basic Parameters </li>
<li> Inlet and Outlet BCs </li>
<li> Wall Properties </li>
<li> Solver Parameters </li>
<li> Create Files and Run Simulation </li>
<li> Convert Results </li>
</ul></p>
<p>A selecting a sub-panel name brings up the sub-panel’s widgets. The following sections describe how each of the sub-panels are used.</p>
</section>
<section id="mesh-panel" class="subgroup"><h2>Mesh Panel</h2>
<p>The Mesh panel is primarily used to create centerlines from the surface of a 3D geometric model. A source for the centerline
computation must first be selected from the inlet/outlet faces (model caps) defined by the <strong>Modeling Tool</strong>. The number of
elements used to discretize a segment may be controled by setting the element size.</p>
<div style="background-color: #F0F0F0; padding: 10px; border: 1px solid #e6e600; border-left: 6px solid #e6e600">
The centerline computation may take a significant amount of time to finish for a large model with many vessel branches. It is
also sensitive to the quality of the model surface mesh. If the surface mesh is not well-defined (e.g. has holes or overlapping faces)
then the centerline computation may fail.
</div>
<p><br></p>
<h3>Panel Layout</h3>
<p><br>
<figure>
<img src="documentation/rom_simulation/tool/images/panel.png" style="float: left; width: 30%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<h3>Usage</h3>
<p><strong>Model</strong> - The name of the model used to create centerlines. The model is selected when creating the simulation job. This text box is for display only, a model name cannot be entered.</p>
<p><strong>Select Inlet Face</strong> - Select the source for the centerline computation. Clicking on this button causes a multi-element
check box to appear with entries for each model inlet/outlet face. A (single) face is selected, typically vessel inlet.</p>
<p><img class="svImg svImgSm" src="documentation/rom_simulation/tool/images/source-face.png"></p>
<p><strong>Inlet Face</strong> - The model face name used as a source for the centerline computation. This text box is for display only,
a face name cannot be entered.</p>
<p><strong>Calculate Centerlines</strong> - Start the centerline computation. </p>
<p><strong>Element size</strong> - Set the size of elements used to discretize a segment. </p>
</section>
<section id="basic-panel" class="subgroup"><h2>Basic Parameters Panel</h2>
<p>The Basic Parameters panel is used to set the fluid physical parameters.</p>
<h3>Panel Layout</h3>
<p>The panel GUI contains a single table. </p>
<p><br>
<figure>
<img src="documentation/rom_simulation/tool/images/basic-panel.png" style="float: left; width: 30%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<h3>Usage</h3>
<p>Values may be entered in the table by double clicking in the <strong>Value</strong> column.</p>
<p><strong>Fluid Density</strong> - The value of the fluid density used for simulations. </p>
<p><strong>Fluid Viscosity</strong> - The value of the fluid Viscosity used for simulations. </p>
</section>
<section id="bcs-panel" class="subgroup"><h2>Inlet and Outlet BCs Panel</h2>
<p>The Inlet and Outlet BCs panel is used to set the boundary condition type and parameter values for each inlet and outlet
face defined for the model. The following types of boundary conditions are supported
<ol>
<li>Prescribed velocites</li>
<li>Resistance</li>
<li>RCR</li>
</ol></p>
<h3>Panel Layout</h3>
<p>The panel GUI contains a single table listing the inlet and outlet faces defined for the model. The panel shown below has
three inlet and outlet faces defined.</p>
<p><br>
<figure>
<img src="documentation/rom_simulation/tool/images/bcs-panel.png" style="float: left; width: 30%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<h3>Usage</h3>
<p>The boundary condition type and associated parameter values are changed by double clicking on a face name in the <strong>Name</strong> column.
This displays a <strong>Set Inlet/Outlet BCs</strong> popup window. The parameters displayed in the window depend on the boundary condition
type</p>
<p><br>
<figure>
<img src="documentation/rom_simulation/tool/images/bcs-pres-vel.png" style="float: left; width: 30%; margin-right: 1%; margin-bottom: 0.5em;">
<img src="documentation/rom_simulation/tool/images/bcs-res.png" style="float: left; width: 30%; margin-right: 1%; margin-bottom: 0.5em;">
<img src="documentation/rom_simulation/tool/images/bcs-rcr.png" style="float: left; width: 30%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
<figcaption> <i><b>Set Inlet/Outlet BCs</b> popup window for different boundary condition types: Prescribed velocites, Resistance and RCR.</i></figcaption>
</figure>
<br></p>
<h4>Prescribed velocites</h4>
<p>The <strong>Prescribed velocites</strong> boundary condition defines a flow waveform for an inlet face. The inlet flow rates are provided by a text file
with time and flow value colums. </p>
<h5><u>Usage</u></h5>
<p>Analytic Shape - Defines the shape of the velocity profile: parabolid, plug or wormersley.
<br>
Point Number - Defines ?
<br>
Fourier Modes - Defines ?
<br>
Flow rate (from file) - Selecting the <strong>…</strong> brings a file browser used to selected a flow file.
<br>
Period -
<br>
Flip normal -
<br>
<br></p>
<h4>Resistance</h4>
<p>The <strong>Resistance</strong> boundary condition defines the downstream resistance for an outlet face. </p>
<h5><u>Usage</u></h5>
<p>Resistance - The resistance parameter that characterizes the downstream vasculature.
<br>
Distal Pressure - Defines ?
<br>
<br></p>
<h4>RCR</h4>
<p>The <strong>RCR</strong> boundary condition defines the downstream resistance for an outlet face. </p>
<h5><u>Usage</u></h5>
<p>Rp C Rd - The resistance parameter that characterizes the downstream vasculature.
<br>
Distal Pressure - Defines ?</p>
</section>
<section id="wall-props-panel" class="subgroup"><h2>Wall Properites Panel</h2>
<p>The Wall Properites panel is used to set the material properties for vessel walls. The following material models are supported
<ol>
<li>Linear</li>
<li>Olufsen</li>
</ol></p>
<h3>Panel Layout</h3>
<p>The panel GUI contains parameters that vary with the material model selected by the <strong>Material Model</strong> combination box.</p>
<p><br>
<figure>
<img src="documentation/rom_simulation/tool/images/wall-props-linear.png" style="float: left; width: 30%; margin-right: 1%; margin-bottom: 0.5em;">
<img src="documentation/rom_simulation/tool/images/wall-props-olufsen.png" style="float: left; width: 30%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
<figcaption> <i>The panel displays different material parameters depending on the material model selected.</i></figcaption>
</figure>
<br></p>
<h3>Usage</h3>
<p>The boundary condition type and associated parameter values are changed by double clicking on a face name in the <strong>Name</strong> column.
This displays a <strong>Set Inlet/Outlet BCs</strong> popup window. The parameters displayed in the window depend on the boundary condition
type
<br></p>
<h4>Linear</h4>
<p>The <strong>Linear</strong> material model.</p>
<h5><u>Usage</u></h5>
<p>Eh/r - The product of elastic modulus and thickness divided by the radius.
<br>
Pressure - The material reference pressure.
<br>
<br></p>
<h4>Olufsen</h4>
<p>The <strong>Olufsen</strong> material model.</p>
<h5><u>Usage</u></h5>
<p>K1, K2, K3 - The empirically-derived constants used to best fit the equation $Eh/r_0(z) = k_1 \exp(k_2 r_0(z)) + k_3 $.
<br>
Exponent - The material exponent.
<br>
Pressure - The material reference pressure.
<br></p>
</section>
<section id="solver-params-panel" class="subgroup"><h2>Solver Parameters Panel</h2>
<p>The Solver Parameters panel is used to set the parameters needed to execute the 1D Solver.</p>
<p>Simulation results are computed for times <strong>Time Step Size</strong>*i, i = 0,1,2,…,<strong>Number of Time Steps</strong> but are<br>
only written with the frequency given by <strong>Number of Timesteps between Saving Data</strong>.</p>
<h3>Panel Layout</h3>
<p>The panel GUI contains a single table listing <strong>Time Step</strong> and <strong>Output Control</strong> solver parameters.</p>
<p><br>
<figure>
<img src="documentation/rom_simulation/tool/images/solver-params-panel.png" style="float: left; width: 30%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<h3>Usage</h3>
<p>Values may be entered in the table by double clicking in the <strong>Value</strong> column.</p>
<p><strong>Number of Time Steps</strong> - The number of time steps to use for the 1D simulation.</p>
<p><strong>Time Step Size</strong> - The size of the time step to use for the 1D simulation. Time step size affects numerical error and stability.</p>
<p><strong>Number of Timesteps between Saving Data</strong> - The number of time steps to skip when saving 1D simulation results.</p>
</section>
<section id="create-files-panel" class="subgroup"><h2>Create Files and Run Simulation Panel</h2>
<p>The Create Files and Run Simulation panel is used to create a 1D solver input file and run the 1D solver.</p>
<h3>Panel Layout</h3>
<p><br>
<figure>
<img src="documentation/rom_simulation/tool/images/create-files-panel.png" style="float: left; width: 30%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<h3>Usage</h3>
<p><strong>Create Files for Simulation</strong> - Create a 1D solver input file. </p>
<p><strong>Run Simulation</strong> - Run the 1D solver. </p>
</section>
<section id="convert-results-panel" class="subgroup"><h2>Convert Results</h2>
<p>The Convert Results panel is used to convert 1D simulation results to a CSV file format. </p>
<p>The simulation results directory must contain a 1D solver input file named <strong>solver.in</strong> and results (.dat) files.
Simulation results are stored in the project’s <strong>Simulations1d/JOBNAME</strong> directory. </p>
<p>Results can be selectively converted for segements at vessel outlets. </p>
<p>A time range start/stop values can be given to only convert results within that range. The data conversion times
are determined by the parameter values specified in the <strong>Solver Parameters</strong> panel.</p>
<p>The 1D solver writes results for cross-section area, flow, pressure, Reynolds number (Re), and wall shear stress (wss).
Results can be selectively converted for one or more of these data.</p>
<h3>Panel Layout</h3>
<p><br>
<figure>
<img src="documentation/rom_simulation/tool/images/convert-results-panel.png" style="float: left; width: 30%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<h3>Usage</h3>
<p><strong>Results Directory</strong> - Set the directory containing the 1D simulation results to convert. The directory path can be entered in
the text box. Selecting <strong>…</strong> brings up a file browser.</p>
<p><strong>Convert Directory</strong> - Set the directory where converted results are written. The directory path can be entered in
the text box. Selecting <strong>…</strong> brings up a file browser.</p>
<p><strong>Start</strong> - Set the start time for the time range usded to convert simulation data. The time is a real simulation time value.</p>
<p><strong>Stop</strong> - Set the stop time for the time range usded to convert simulation data. The time is a real simulation time value.</p>
<p><strong>Segements</strong> - Set the segment type used to convert data. Select <b>Outlet</b> to convert data only for segments that have
an outlet boundary condition. Select <b>All</b> for converting data for all segments.</p>
<p><strong>Data</strong> - Set the names of data to convert. </p>
<p><strong>Convert</strong> - Convert the 1D simulation results.</p>
</section>
<section id="tool-tutorial" class="subgroup"><h2> Tutorial </h2>
<p>This section demonstrates how to use the <strong>1D Simulation Tool</strong> to interactively create the geometry,
boundary conditions and solver parameters needed to execute a <strong>sv1DSolver</strong> simulation. The geometry of
the one-dimensional networks used for a 1D simulation is based on the model of the aorta and branching
left and right iliac vessels created in the Demo Project discussed in the SimVascular <a href="docsQuickGuide.html#simulation"> QuickGuide </a> documentation. </p>
<p>A flow rate inlet boundary condition is used for the aorta inlet. RCR boundary conditions are used for left and
left and right iliac vessels. </p>
<p>An Olufsen material model is used for the vessel wall properties.</p>
<p><br>
<h3> Open the Demo Project </h3></p>
<p>Opening the Demo Project displays the image slices and model geometry. Change the display layout to big 3D
and hide the image to get a better view of the model.</p>
<p><br>
<figure>
<img src="documentation/1d_simulation/tool/images/tutorial-1/open-demo-project.png" style="float: left; width: 40%; margin-right: 1%; margin-bottom: 0.5em;">
<img src="documentation/1d_simulation/tool/images/tutorial-1/open-demo-project-model.png" style="float: left; width: 40%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
<figcaption> <i> (Left) The model of the aorta and branching left and right iliac vessels created in the Demo Project. (Right) Hiding the image and changing layout to big 3D. </i></figcaption>
</figure>
<br></p>
<h3> Create an instance of the 1D Simulation Tool </h3>
<p>Create an instance of the <strong>1D Simulation Tool</strong> by right clicking on the <strong>SV Data Manager</strong> <strong>Simulations1d</strong> node
and selecting <strong>Create 1D Simulation job</strong> from the popup menu.</p>
<p><br>
<figure>
<img src="documentation/1d_simulation/tool/images/tutorial-1/create-instance.png" style="float: left; width: 80%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<p>A box is then displayed that is used to select a model name and to enter the name of the
1D simulation job to create. The <strong>Select Model</strong> is set to the default model name <strong>demo</strong>,
the only model defined. Enter <strong>demo</strong> in the <strong>Job Name</strong> text box to create a 1D simulation
job named <strong>demo</strong>. Click <strong>OK</strong>.</p>
<p><br>
<figure>
<img src="documentation/1d_simulation/tool/images/tutorial-1/create-instance-job.png" style="float: left; width: 30%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<p>A node named <strong>demo</strong> is created under <strong>SV Data Manager</strong> <strong>Simulations1d</strong>. Left clicking on this node
brings up the <strong>1D Simulation Tool</strong> GUI panel on the right side of the SimVascular window. The model name is
displayed in the <strong>Model</strong> text box. The model surface representation is changed to wireframe to better show
centerlines geometry when it is created.</p>
<div style="background-color: #F0F0F0; padding: 10px; border: 1px solid green; border-left: 6px solid green">
Note that the <b>Calculate Centerlines</b> button is grayed out and disabled. This is because a source face
has not yet been selected. The button is enabled after a source face is selected. Some of the widgets in other
panels are similarly disabled until the data they depend on becomes available.
</div>
<p><br>
<figure>
<img src="documentation/1d_simulation/tool/images/tutorial-1/create-instance-panel.png" style="float: left; width: 80%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<!-- ------------------------------------ -->
<!-- Create centerlines geometry -->
<!-- ------------------------------------ -->
<h3> Create centerlines geometry </h3>
<p>Select a model inlet face for the start of the centerlines by clicking on the <strong>Select Inlet Face</strong> button.
This brings up a check box listing all of the caps (inlet/outlet faces) defined for the <strong>demo</strong> model.
Select the <b>cap_aorta</b> entry box under the <strong>Use</strong> column of the check box. </p>
<p><br>
<figure>
<img src="documentation/1d_simulation/tool/images/tutorial-1/create-cl-face.png" style="float: left; width: 30%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<p>The inlet face selected is displyed in the <strong>Inlet Face</strong> text box. Click on the <strong>Calculate Centerlines</strong> button to start the
centerlines computation for the <strong>demo</strong> surface 3D geometric model.
When the computation finishes the centerlines geometry is displyed using green lines.</p>
<p><br>
<figure>
<img src="documentation/1d_simulation/tool/images/tutorial-1/create-cl-lines.png" style="float: left; width: 80%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<!-- -------------------------------------------- -->
<!-- Setting inlet and outlet boundary conditions -->
<!-- -------------------------------------------- -->
<h3> Set inlet and outlet boundary conditions </h3>
<p>Select the <strong>Inlet and Outlet BCs</strong> sub-panel name to bring up the <strong>Inlet and Outlet BCs</strong> panel used to set the boundary condition type
and parameter values for each inlet and outlet face defined for the model. </p>
<p><br>
<figure>
<img src="documentation/1d_simulation/tool/images/tutorial-1/bcs-panel.png" style="float: left; width: 80%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<p>The panel contains a table listing the inlet (cap_aorta) and two outlet (cap_right_iliac and cap_aorta_2) faces
defined for the model.</p>
<p><br>
<h4><b> Set <i>cap_aorta</i> inlet flow boundary condition </b></h4>
Double click with the left mouse button on <b>cap_aorta</b> under the <strong>Name</strong> column.
This brings up a <strong>Set Inlet/Outlet BCs</strong> popup window. To set an inlet flow boundary condition
<div style="background-color: #F0F0F0; padding: 10px">
1) From the <b>BC Type</b> list select <strong>Prescribed Velocities</strong> <br>
2) Left click on the <strong>Flow rate (from file)</strong> <strong>…</strong> button to bring up a file browser <br>
3) Select the inflow.flow file from the project’s <strong>flow-files</strong> directory <br>
4) Select <strong>OK</strong><br>
</div>
<br>
<figure>
<img src="documentation/1d_simulation/tool/images/tutorial-1/bcs-aorta.png" style="float: left; width: 20%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<p><br>
<h4><b> Set <i>cap_right_iliac</i> RCR boundary condition </b></h4>
Double click with the left mouse button on <b>cap<em>right</em>iliac</b> under the <strong>Name</strong> column.
This brings up a <strong>Set Inlet/Outlet BCs</strong> popup window. To set an RCR boundary condition
<div style="background-color: #F0F0F0; padding: 10px">
1) From the <b>BC Type</b> list select <strong>RCR</strong> <br>
2) Enter <i>90 0.0008 1200</i> into the <b>$R_p C R_d$</b> text box <br>
3) Select <strong>OK</strong>
</div>
<br>
<figure>
<img src="documentation/1d_simulation/tool/images/tutorial-1/bcs-right-iliac.png" style="float: left; width: 20%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<p><br>
<h4><b> Set <i>cap_aorta_2</i> RCR boundary condition </b></h4>
Double click with the left mouse button on <b>cap_aorta_2</b> under the <strong>Name</strong> column.
This brings up a <strong>Set Inlet/Outlet BCs</strong> popup window. To set the values for the RCR boundary condition
<div style="background-color: #F0F0F0; padding: 10px">
1) From the <b>BC Type</b> list select <strong>RCR</strong> <br>
2) Enter <i>100 0.0004 1100</i> into the <b>$R_p C R_d$</b> text box <br>
3) Select <strong>OK</strong>
</div>
<br>
<figure>
<img src="documentation/1d_simulation/tool/images/tutorial-1/bcs-left-iliac.png" style="float: left; width: 20%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<p>The boundary condition and parameter values for each inlet and outlet faces are now defined and are shown in the
<strong>Inlet and Outlet BCs</strong> panel table. Boundary conditions may also be directly entered into the table by double clicking
with the left mouse button on the <strong>BC Type</strong> and <strong>Values</strong> columns.</p>
<p><br>
<figure>
<img src="documentation/1d_simulation/tool/images/tutorial-1/bcs-values-set.png" style="float: left; width: 80%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<!-- -------------------------------------------- -->
<!-- Setting wall properties -->
<!-- -------------------------------------------- -->
<h3> Set wall properties </h3>
<p>Select the <strong>Wall Properties</strong> sub-panel name to bring up the <strong>Wall Properties</strong> panel used to set the material
properties for vessel walls.</p>
<p><br>
<figure>
<img src="documentation/1d_simulation/tool/images/tutorial-1/wall-props-panel.png" style="float: left; width: 80%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<p>To set the material model to Olufsen
<div style="background-color: #F0F0F0; padding: 10px">
1) From the <b>Material Model </b> list select <strong>OLUFSEN</strong> <br>
2) Enter <i> 2.0e7 </i> into the <b>$K_1 $</b> text box <br>
3) Enter <i> 8.65e5 </i> into the <b>$K_3 $</b> text box <br>
4) Enter <i> 113324.0 </i> into the <b>Pressure</b> text box <br>
</div>
<br></p>
<p><br>
<figure>
<img src="documentation/1d_simulation/tool/images/tutorial-1/wall-props-params.png" style="float: left; width: 80%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<!-- -------------------------------------------- -->
<!-- Solver parameters -->
<!-- -------------------------------------------- -->
<h3> Set solver parameters </h3>
<p>Select the <strong>Solver Parameters</strong> sub-panel name to bring up the <strong>Solver Parameters</strong> panel used to set the
parameters needed to execute the 1D Solver.</p>
<p><br>
<figure>
<img src="documentation/1d_simulation/tool/images/tutorial-1/solver-params-panel.png" style="float: left; width: 80%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<p>To set the solver parameters
<div style="background-color: #F0F0F0; padding: 10px">
1) Double click with the left mouse button on the <strong>Number of Timesteps</strong> <strong>Values</strong> column and enter <i>10000</i>. <br>
2) Double click with the left mouse button on the <strong>Time Steps Size</strong> <strong>Values</strong> column and enter <i>0.001</i>. <br>
3) Double click with the left mouse button on the <strong>Number of Timesteps between Saving Data</strong> <strong>Values</strong> column and enter <i>1</i>. <br>
</div>
<br></p>
<p><br>
<figure>
<img src="documentation/1d_simulation/tool/images/tutorial-1/solver-params-values.png" style="float: left; width: 80%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<!-- -------------------------------------------- -->
<!-- Create files and Run simulation -->
<!-- -------------------------------------------- -->
<h3> Create the 1D Solver input file and run a simulation </h3>
<p>Select the <strong>Create Files and Run Simulation</strong> sub-panel name to bring up the <strong>Create Files and Run Simulation</strong> panel used to
used to create a 1D solver input file and run the 1D solver.</p>
<p><br>
<figure>
<img src="documentation/1d_simulation/tool/images/tutorial-1/create-files-panel.png" style="float: left; width: 80%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<p>To generate the 1D Solver input file click on the <strong>Create Files for Simulation</strong> button. A popup window is displayed
showing the number of segments, nodes and finite elements created for the 1D simulation. </p>
<p><br>
<figure>
<img src="documentation/1d_simulation/tool/images/tutorial-1/create-files-popup.png" style="float: left; width: 30%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<p>Click <strong>OK</strong>.</p>
<p>To run a 1D Solver simulation on the <strong>Run Simulation</strong> button. A popup window is displayed when the simulation finishes. </p>
<p><br>
<figure>
<img src="documentation/1d_simulation/tool/images/tutorial-1/create-files-run-sim.png" style="float: left; width: 30%; margin-right: 1%; margin-bottom: 0.5em;">
<p style="clear: both;">
</figure>
<br></p>
<p>Selecting the <strong>Show Details</strong> button dispays the 1D Solver log file</p>
<div style="background-color: #F0F0F0">
<pre>
<p style="font-size:10px" >
---------------------------------
oneDSolver
1D Finite Element Hemodynamics
---------------------------------
Reading file: /SVProject/Simulations1d/demo/solver.in ...
Printing Model Echo ...
Creating and Running Model ...
Creating Nodes ...
Creating Joints ...
Creating Materials ...
call cvOneMaterialsOlufsen p1_=113324.014500 K3_=0.000000
Setting material K's 0 -22.5267 1e+07 ...
Setting reference Pressure 0
call SetMaterialType K3_ 10000000.000000
new cvOneMaterialOlufsen called check pRef 0.000000
Creating Data Tables ...
Creating Segments ...
Solving Model ...
Inlet Condition Type: FLOW
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Number of Joints: 1
Number of Segments: 3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
call cvOneMaterialsOlufsen p1_=113324.014500 K3_=33.690970
In GetNewInstance cvOneDMaterialOlufsen is called matID=0
call cvOneDMaterialOlufsen that this K3_=10000000.000000 p1_=0.000000
In GetNewInstance cvOneDMaterialOlufsen* materials is called
subdomain cpp setupMaterial matID=0
call cvOneMaterialsOlufsen p1_=113324.014500 K3_=0.000000
In GetNewInstance cvOneDMaterialOlufsen is called matID=0
call cvOneDMaterialOlufsen that this K3_=10000000.000000 p1_=0.000000
In GetNewInstance cvOneDMaterialOlufsen* materials is called
subdomain cpp setupMaterial matID=0
RCR boundary condition
call cvOneMaterialsOlufsen p1_=113324.014500 K3_=0.000000
In GetNewInstance cvOneDMaterialOlufsen is called matID=0
call cvOneDMaterialOlufsen that this K3_=10000000.000000 p1_=0.000000
In GetNewInstance cvOneDMaterialOlufsen* materials is called
subdomain cpp setupMaterial matID=0
RCR boundary condition
Subdomain No. 3
Joint No. 1
Outlet No. 2
Number of equations 1303
Using Conservative Form ...
maxStep/stepSize: 10000
Total Solution is: 10000 x 1303
**** Time cycle 1
iter: 0 normf: 134.606 norms: 0.00421471 time: 0.001614
iter: 1 normf: 43.8713 norms: 0.0246538 time: 0.001102
iter: 2 normf: 1.14964 norms: 1.17156e-05 time: 0.001108
iter: 3 normf: 0.0299168 norms: 5.84007e-08 time: 0.001096
iter: 4 normf: 0.000699028 norms: 1.16806e-09 time: 0.001097
iter: 5 normf: 2.68722e-05 norms: 3.94369e-11 time: 0.001097
Time = 0.001, Mass = 0.0169997, Tot iters = 6
iter: 0 normf: 81.4714 norms: 0.0257353 time: 0.001099
iter: 1 normf: 7.04379 norms: 4.91323e-05 time: 0.001204
iter: 2 normf: 0.288877 norms: 3.82307e-07 time: 0.001262
iter: 3 normf: 0.0109262 norms: 2.31787e-08 time: 0.001136
...
Time = 9.998, Mass = 0.0889071, Tot iters = 4
iter: 0 normf: 0.732147 norms: 0.000141274 time: 0.001097
iter: 1 normf: 0.394251 norms: 0.000232438 time: 0.001099
iter: 2 normf: 0.0100552 norms: 5.84729e-09 time: 0.001096
iter: 3 normf: 0.000314998 norms: 4.17093e-11 time: 0.001097
Time = 9.999, Mass = 0.0899291, Tot iters = 4
iter: 0 normf: 0.734032 norms: 0.000143682 time: 0.001099
iter: 1 normf: 0.384852 norms: 0.000227006 time: 0.001096
iter: 2 normf: 0.00978278 norms: 5.759e-09 time: 0.001096
iter: 3 normf: 0.000306487 norms: 4.06793e-11 time: 0.001098
Time = 10, Mass = 0.0908278, Tot iters = 4
demoGroup0_Seg0_flow.dat
demoGroup0_Seg0_area.dat
demoGroup0_Seg0_pressure.dat
demoGroup0_Seg0_Re.dat
demoGroup0_Seg0_wss.dat
demoGroup2_Seg1_flow.dat
demoGroup2_Seg1_area.dat
demoGroup2_Seg1_pressure.dat
demoGroup2_Seg1_Re.dat
demoGroup2_Seg1_wss.dat
demoGroup3_Seg2_flow.dat
demoGroup3_Seg2_area.dat
demoGroup3_Seg2_pressure.dat
demoGroup3_Seg2_Re.dat
demoGroup3_Seg2_wss.dat
Completed!
</p>
</pre>
</div>