-
Notifications
You must be signed in to change notification settings - Fork 27
/
cycle_mlp.py
484 lines (400 loc) · 18 KB
/
cycle_mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import os
import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import DropPath, trunc_normal_
from timm.models.registry import register_model
from timm.models.layers.helpers import to_2tuple
import math
from torch import Tensor
from torch.nn import init
from torch.nn.modules.utils import _pair
from torchvision.ops.deform_conv import deform_conv2d as deform_conv2d_tv
try:
from mmseg.models.builder import BACKBONES as seg_BACKBONES
from mmseg.utils import get_root_logger
from semantic.custom_fun import load_checkpoint
has_mmseg = True
except ImportError:
print('Please Install mmsegmentation first for semantic segmentation.')
has_mmseg = False
try:
from mmdet.models.builder import BACKBONES as det_BACKBONES
from mmdet.utils import get_root_logger
has_mmdet = True
except ImportError:
print('Please Install mmdetection first for object detection and instance segmentation.')
has_mmdet = False
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .96, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head',
**kwargs
}
default_cfgs = {
'cycle_S': _cfg(crop_pct=0.9),
'cycle_M': _cfg(crop_pct=0.9),
'cycle_L': _cfg(crop_pct=0.875),
}
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class CycleFC(nn.Module):
"""
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size, # re-defined kernel_size, represent the spatial area of staircase FC
stride: int = 1,
padding: int = 0,
dilation: int = 1,
groups: int = 1,
bias: bool = True,
):
super(CycleFC, self).__init__()
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
if stride != 1:
raise ValueError('stride must be 1')
if padding != 0:
raise ValueError('padding must be 0')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = _pair(stride)
self.padding = _pair(padding)
self.dilation = _pair(dilation)
self.groups = groups
self.weight = nn.Parameter(torch.empty(out_channels, in_channels // groups, 1, 1)) # kernel size == 1
if bias:
self.bias = nn.Parameter(torch.empty(out_channels))
else:
self.register_parameter('bias', None)
self.register_buffer('offset', self.gen_offset())
self.reset_parameters()
def reset_parameters(self) -> None:
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
def gen_offset(self):
"""
offset (Tensor[batch_size, 2 * offset_groups * kernel_height * kernel_width,
out_height, out_width]): offsets to be applied for each position in the
convolution kernel.
"""
offset = torch.empty(1, self.in_channels*2, 1, 1)
start_idx = (self.kernel_size[0] * self.kernel_size[1]) // 2
assert self.kernel_size[0] == 1 or self.kernel_size[1] == 1, self.kernel_size
for i in range(self.in_channels):
if self.kernel_size[0] == 1:
offset[0, 2 * i + 0, 0, 0] = 0
offset[0, 2 * i + 1, 0, 0] = (i + start_idx) % self.kernel_size[1] - (self.kernel_size[1] // 2)
else:
offset[0, 2 * i + 0, 0, 0] = (i + start_idx) % self.kernel_size[0] - (self.kernel_size[0] // 2)
offset[0, 2 * i + 1, 0, 0] = 0
return offset
def forward(self, input: Tensor) -> Tensor:
"""
Args:
input (Tensor[batch_size, in_channels, in_height, in_width]): input tensor
"""
B, C, H, W = input.size()
return deform_conv2d_tv(input, self.offset.expand(B, -1, H, W), self.weight, self.bias, stride=self.stride,
padding=self.padding, dilation=self.dilation)
def extra_repr(self) -> str:
s = self.__class__.__name__ + '('
s += '{in_channels}'
s += ', {out_channels}'
s += ', kernel_size={kernel_size}'
s += ', stride={stride}'
s += ', padding={padding}' if self.padding != (0, 0) else ''
s += ', dilation={dilation}' if self.dilation != (1, 1) else ''
s += ', groups={groups}' if self.groups != 1 else ''
s += ', bias=False' if self.bias is None else ''
s += ')'
return s.format(**self.__dict__)
class CycleMLP(nn.Module):
def __init__(self, dim, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.mlp_c = nn.Linear(dim, dim, bias=qkv_bias)
self.sfc_h = CycleFC(dim, dim, (1, 3), 1, 0)
self.sfc_w = CycleFC(dim, dim, (3, 1), 1, 0)
self.reweight = Mlp(dim, dim // 4, dim * 3)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, H, W, C = x.shape
h = self.sfc_h(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
w = self.sfc_w(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
c = self.mlp_c(x)
a = (h + w + c).permute(0, 3, 1, 2).flatten(2).mean(2)
a = self.reweight(a).reshape(B, C, 3).permute(2, 0, 1).softmax(dim=0).unsqueeze(2).unsqueeze(2)
x = h * a[0] + w * a[1] + c * a[2]
x = self.proj(x)
x = self.proj_drop(x)
return x
class CycleBlock(nn.Module):
def __init__(self, dim, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip_lam=1.0, mlp_fn=CycleMLP):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = mlp_fn(dim, qkv_bias=qkv_bias, qk_scale=None, attn_drop=attn_drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
self.skip_lam = skip_lam
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x))) / self.skip_lam
x = x + self.drop_path(self.mlp(self.norm2(x))) / self.skip_lam
return x
class PatchEmbedOverlapping(nn.Module):
""" 2D Image to Patch Embedding with overlapping
"""
def __init__(self, patch_size=16, stride=16, padding=0, in_chans=3, embed_dim=768, norm_layer=None, groups=1):
super().__init__()
patch_size = to_2tuple(patch_size)
stride = to_2tuple(stride)
padding = to_2tuple(padding)
self.patch_size = patch_size
# remove image_size in model init to support dynamic image size
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=padding, groups=groups)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
x = self.proj(x)
return x
class Downsample(nn.Module):
""" Downsample transition stage
"""
def __init__(self, in_embed_dim, out_embed_dim, patch_size):
super().__init__()
assert patch_size == 2, patch_size
self.proj = nn.Conv2d(in_embed_dim, out_embed_dim, kernel_size=(3, 3), stride=(2, 2), padding=1)
def forward(self, x):
x = x.permute(0, 3, 1, 2)
x = self.proj(x) # B, C, H, W
x = x.permute(0, 2, 3, 1)
return x
def basic_blocks(dim, index, layers, mlp_ratio=3., qkv_bias=False, qk_scale=None, attn_drop=0.,
drop_path_rate=0., skip_lam=1.0, mlp_fn=CycleMLP, **kwargs):
blocks = []
for block_idx in range(layers[index]):
block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1)
blocks.append(CycleBlock(dim, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, drop_path=block_dpr, skip_lam=skip_lam, mlp_fn=mlp_fn))
blocks = nn.Sequential(*blocks)
return blocks
class CycleNet(nn.Module):
""" CycleMLP Network """
def __init__(self, layers, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
embed_dims=None, transitions=None, segment_dim=None, mlp_ratios=None, skip_lam=1.0,
qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
norm_layer=nn.LayerNorm, mlp_fn=CycleMLP, fork_feat=False):
super().__init__()
if not fork_feat:
self.num_classes = num_classes
self.fork_feat = fork_feat
self.patch_embed = PatchEmbedOverlapping(patch_size=7, stride=4, padding=2, in_chans=3, embed_dim=embed_dims[0])
network = []
for i in range(len(layers)):
stage = basic_blocks(embed_dims[i], i, layers, mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias,
qk_scale=qk_scale, attn_drop=attn_drop_rate, drop_path_rate=drop_path_rate,
norm_layer=norm_layer, skip_lam=skip_lam, mlp_fn=mlp_fn)
network.append(stage)
if i >= len(layers) - 1:
break
if transitions[i] or embed_dims[i] != embed_dims[i+1]:
patch_size = 2 if transitions[i] else 1
network.append(Downsample(embed_dims[i], embed_dims[i+1], patch_size))
self.network = nn.ModuleList(network)
if self.fork_feat:
# add a norm layer for each output
self.out_indices = [0, 2, 4, 6]
for i_emb, i_layer in enumerate(self.out_indices):
if i_emb == 0 and os.environ.get('FORK_LAST3', None):
# TODO: more elegant way
"""For RetinaNet, `start_level=1`. The first norm layer will not used.
cmd: `FORK_LAST3=1 python -m torch.distributed.launch ...`
"""
layer = nn.Identity()
else:
layer = norm_layer(embed_dims[i_emb])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
else:
# Classifier head
self.norm = norm_layer(embed_dims[-1])
self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
self.apply(self.cls_init_weights)
def cls_init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, CycleFC):
trunc_normal_(m.weight, std=.02)
nn.init.constant_(m.bias, 0)
def init_weights(self, pretrained=None):
""" mmseg or mmdet `init_weight` """
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_embeddings(self, x):
x = self.patch_embed(x)
# B,C,H,W-> B,H,W,C
x = x.permute(0, 2, 3, 1)
return x
def forward_tokens(self, x):
outs = []
for idx, block in enumerate(self.network):
x = block(x)
if self.fork_feat and idx in self.out_indices:
norm_layer = getattr(self, f'norm{idx}')
x_out = norm_layer(x)
outs.append(x_out.permute(0, 3, 1, 2).contiguous())
if self.fork_feat:
return outs
B, H, W, C = x.shape
x = x.reshape(B, -1, C)
return x
def forward(self, x):
x = self.forward_embeddings(x)
# B, H, W, C -> B, N, C
x = self.forward_tokens(x)
if self.fork_feat:
return x
x = self.norm(x)
cls_out = self.head(x.mean(1))
return cls_out
@register_model
def CycleMLP_B1(pretrained=False, **kwargs):
transitions = [True, True, True, True]
layers = [2, 2, 4, 2]
mlp_ratios = [4, 4, 4, 4]
embed_dims = [64, 128, 320, 512]
model = CycleNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, **kwargs)
model.default_cfg = default_cfgs['cycle_S']
return model
@register_model
def CycleMLP_B2(pretrained=False, **kwargs):
transitions = [True, True, True, True]
layers = [2, 3, 10, 3]
mlp_ratios = [4, 4, 4, 4]
embed_dims = [64, 128, 320, 512]
model = CycleNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, **kwargs)
model.default_cfg = default_cfgs['cycle_S']
return model
@register_model
def CycleMLP_B3(pretrained=False, **kwargs):
transitions = [True, True, True, True]
layers = [3, 4, 18, 3]
mlp_ratios = [8, 8, 4, 4]
embed_dims = [64, 128, 320, 512]
model = CycleNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, **kwargs)
model.default_cfg = default_cfgs['cycle_M']
return model
@register_model
def CycleMLP_B4(pretrained=False, **kwargs):
transitions = [True, True, True, True]
layers = [3, 8, 27, 3]
mlp_ratios = [8, 8, 4, 4]
embed_dims = [64, 128, 320, 512]
model = CycleNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, **kwargs)
model.default_cfg = default_cfgs['cycle_L']
return model
@register_model
def CycleMLP_B5(pretrained=False, **kwargs):
transitions = [True, True, True, True]
layers = [3, 4, 24, 3]
mlp_ratios = [4, 4, 4, 4]
embed_dims = [96, 192, 384, 768]
model = CycleNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, **kwargs)
model.default_cfg = default_cfgs['cycle_L']
return model
if has_mmseg and has_mmdet:
# For dense prediction tasks only
@seg_BACKBONES.register_module()
@det_BACKBONES.register_module()
class CycleMLP_B1_feat(CycleNet):
def __init__(self, **kwargs):
transitions = [True, True, True, True]
layers = [2, 2, 4, 2]
mlp_ratios = [4, 4, 4, 4]
embed_dims = [64, 128, 320, 512]
super(CycleMLP_B1_feat, self).__init__(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, fork_feat=True)
@seg_BACKBONES.register_module()
@det_BACKBONES.register_module()
class CycleMLP_B2_feat(CycleNet):
def __init__(self, **kwargs):
transitions = [True, True, True, True]
layers = [2, 3, 10, 3]
mlp_ratios = [4, 4, 4, 4]
embed_dims = [64, 128, 320, 512]
super(CycleMLP_B2_feat, self).__init__(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, fork_feat=True)
@seg_BACKBONES.register_module()
@det_BACKBONES.register_module()
class CycleMLP_B3_feat(CycleNet):
def __init__(self, **kwargs):
transitions = [True, True, True, True]
layers = [3, 4, 18, 3]
mlp_ratios = [8, 8, 4, 4]
embed_dims = [64, 128, 320, 512]
super(CycleMLP_B3_feat, self).__init__(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, fork_feat=True)
@seg_BACKBONES.register_module()
@det_BACKBONES.register_module()
class CycleMLP_B4_feat(CycleNet):
def __init__(self, **kwargs):
transitions = [True, True, True, True]
layers = [3, 8, 27, 3]
mlp_ratios = [8, 8, 4, 4]
embed_dims = [64, 128, 320, 512]
super(CycleMLP_B4_feat, self).__init__(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, fork_feat=True)
@seg_BACKBONES.register_module()
@det_BACKBONES.register_module()
class CycleMLP_B5_feat(CycleNet):
def __init__(self, **kwargs):
transitions = [True, True, True, True]
layers = [3, 4, 24, 3]
mlp_ratios = [4, 4, 4, 4]
embed_dims = [96, 192, 384, 768]
super(CycleMLP_B5_feat, self).__init__(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, fork_feat=True)