Skip to content

ShizheHu/TPAMI24_Awesome-Information-Bottleneck

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 

Repository files navigation

Awesome-Information-Bottleneck

A curated list of related resources for information bottleneck. \

For more details, please see "Shizhe Hu, Zhengzheng Lou, Xiaoqiang Yan, and Yangdong Ye: A Survey on Information Bottleneck . IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 46(8): 5325-5344, Aug. 2024.".

Contents

Papers

arXiv Papers

  • Variational Information Bottleneck Model for Accurate Indoor Position Recognition [paper]
    Weizhu Qian, Franck Gechter

  • Information Bottleneck for an Oblivious Relay with Channel State Information: the Vector Case [paper]
    Hao Xu, Tianyu Yang, Giuseppe Caire, Shlomo Shamai

  • Disentangled Information Bottleneck [paper]
    Ziqi Pan, Li Niu, Jianfu Zhang, Liqing Zhang

  • State Predictive Information Bottleneck [paper]
    Dedi Wang, Pratyush Tiwary

  • On the Relevance-Complexity Region of Scalable Information Bottleneck [paper]
    Mohammad Mahdi Mahvari, Mari Kobayashi, Abdellatif Zaidi

  • Quadratic Privacy-Signaling Games, Payoff Dominant Equilibria and the Information Bottleneck Problem [paper]
    AErtan Kazıklı, Sinan Gezici, Serdar Yüksel

  • An Information Bottleneck Approach for Controlling Conciseness in Rationale Extraction [paper]
    Bhargavi Paranjape, Mandar Joshi, John Thickstun, Hannaneh Hajishirzi, Luke Zettlemoyer

  • The Information Bottleneck Problem and Its Applications in Machine Learning [paper]
    Ziv Goldfeld, Yury Polyanskiy

  • Broadcast Approach for the Information Bottleneck Channel [paper]
    Avi Steiner, Shlomo Shamai

  • On the Difference Between the Information Bottleneck and the Deep Information Bottleneck [paper]
    Aleksander Wieczorek, Volker Roth

  • General Information Bottleneck Objectives and their Applications to Machine Learning [paper]
    Sayandev Mukherjee

  • Information bottleneck through variational glasses [paper]
    Slava Voloshynovskiy, Mouad Kondah, Shideh Rezaeifar, Olga Taran, Taras Holotyak, Danilo Jimenez Rezende

  • The Convex Information Bottleneck Lagrangian [paper]
    Borja Rodríguez Gálvez, Ragnar Thobaben, Mikael Skoglund

  • Improving Unsupervised Domain Adaptation with Variational Information Bottleneck [paper]
    Yuxuan Song, Lantao Yu, Zhangjie Cao, Zhiming Zhou, Jian Shen, Shuo Shao, Weinan Zhang, Yong Yu

  • Learning Efficient Multi-agent Communication: An Information Bottleneck Approach [paper]
    Rundong Wang, Xu He, Runsheng Yu, Wei Qiu, Bo An, Zinovi Rabinovich

  • Learning Representations in Reinforcement Learning:An Information Bottleneck Approach [paper]
    Pei Yingjun, Hou Xinwen

  • Information Bottleneck Methods on Convolutional Neural Networks [paper]
    Junjie Li, Ding Liu

  • Machine Learning using the Variational Predictive Information Bottleneck with a Validation Set [paper]
    Sayandev Mukherjee

2020

  • Tailin Wu, Hongyu Ren, Pan Li, Jure Leskovec: Graph Information Bottleneck (NeurIPS) [paper]

  • Zhiying Jiang, Raphael Tang, Ji Xin, Jimmy Lin: Inserting Information Bottlenecks for Attribution in Transformers (EMNLP) [paper]

  • Shizhe Hu, Zenglin Shi, and Yangdong Ye: DMIB: Dual-correlated Multivariate Information Bottleneck for Multi-view Clustering (IEEE TCYB) [paper]

  • Shizhe Hu, Xiaoqiang Yan, Yangdong Ye: Joint Specific and Correlated Information Exploration for Multi-view Action Clustering (Information Sciences) [paper]

  • Shizhe Hu, Xiaoqiang Yan, Yangdong Ye: Dynamic Auto-weighted Multi-view Co-clustering (Pattern Recognition) [paper]

  • Shizhe Hu, Xiaoqiang Yan, Yangdong Ye: Multi-task Image Clustering through Correlation Propagation (IEEE TKDE) [paper]

  • Xiaoqiang Yan, Yangdong Ye, Xueying Qiu, Hui Yu: Synergetic information bottleneck for joint multi-view and ensemble clustering (Information Fusion) [paper]

  • Xiaoqiang Yan, Zhengzheng Lou, Shizhe Hu, Yangdong Ye: Multi-task information bottleneck co-clustering for unsupervised cross-view human action categorization (ACM TKDD) [paper]

  • Xiaoqiang Yan, Yangdong Ye, Xueying Qiu, Milos Manic, Hui Yu: CMIB:Unsupervised Image Object Categorization in Multiple Visual Contexts (IEEE TII) [paper]

  • Xiaoqiang Yan, Yiqiao Mao, Shizhe Hu, Yangdong Ye: Heterogeneous Dual-Task Clustering with Visual-Textual Information (SDM) [paper]

  • Tailin Wu, Ian Fischer: Phase Transitions for the Information Bottleneck in Representation Learning (ICLR) [paper]

  • Karl Schulz, Leon Sixt, Federico Tombari, Tim Landgraf: Restricting the Flow: Information Bottlenecks for Attribution (ICLR) [paper]

  • Shizhe Hu, Zhenquan Hou, Zhengzheng Lou, Yangdong Ye: Content VS Context: How about "Walking Hand-In-Hand" for Image Clustering (ICASSP) [paper]

2019

  • R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam Trischler, Yoshua Bengio: Learning deep representations by mutual information estimation and maximization (ICLR) [paper] [code]

  • Thanh T. Nguyen, Jaesik Choi: Markov Information Bottleneck to Improve Information Flow in Stochastic Neural Networks (Entropy) [paper]

  • Xiaoqiang Yan, Yangdong Ye, Yiqiao Mao, Hui Yu: Shared-Private Information Bottleneck Method for Cross-Modal Clustering (IEEE Access) [paper]

  • Syed Aizaz Ali Shah, Maximilian Stark, Gerhard Bauch: Coarsely Quantized Decoding and Construction of Polar Codes Using the Information Bottleneck Method (Algorithms) [paper]

  • Hao Cheng, Dongze Lian, Shenghua Gao, Yanlin Geng: Utilizing Information Bottleneck to Evaluate the Capability of Deep Neural Networks for Image Classification (Entropy) [paper]

  • Artemy Kolchinsky, Brendan D. Tracey, David H. Wolpert: Nonlinear Information Bottleneck (Entropy) [paper]

  • Tailin Wu, Ian Fischer, Isaac L. Chuang, Max Tegmark: Learnability for the Information Bottleneck (Entropy) [paper]

  • Jan Lewandowsky, Gerhard Bauch, Matthias Tschauner, Peter Oppermann: Design and Evaluation of Information Bottleneck LDPC Decoders for Digital Signal Processors (IEICE Transactions) [paper]

  • DJ Strouse, David J. Schwab: The Information Bottleneck and Geometric Clustering (Neural Computation) [paper]

  • Matías Vera, Leonardo Rey Vega, Pablo Piantanida: Collaborative Information Bottleneck (IEEE Trans. Information Theory) [paper]

  • Farhang Bayat, Shuangqing Wei: Information Bottleneck Problem Revisited (Allerton) [paper]

  • Xiang Lisa Li, Jason Eisner: Specializing Word Embeddings (for Parsing) by Information Bottleneck (EMNLP/IJCNLP) [paper]

  • Peter West, Ari Holtzman, Jan Buys, Yejin Choi: BottleSum: Unsupervised and Self-supervised Sentence Summarization using the Information Bottleneck Principle (EMNLP/IJCNLP) [paper]

  • Nauman Dawalatabad, Srikanth R. Madikeri, C. Chandra Sekhar, Hema A. Murthy: Incremental Transfer Learning in Two-pass Information Bottleneck Based Speaker Diarization System for Meetings (ICASSP) [paper]

  • Jacob Goldberger, Yaniv Opochinsky: Information-bottleneck Based on the Jensen-shannon Divergence with Applications to Pairwise Clustering (ICASSP) [paper]

  • Maximilian Stark, Gerhard Bauch, Jan Lewandowsky, Souradip Saha: Decoding of Non-Binary LDPC Codes using the Information Bottleneck Method (ICC) [paper]

  • Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Hugo Larochelle, Matthew Botvinick, Yoshua Bengio, Sergey Levine: InfoBot: Transfer and Exploration via the Information Bottleneck (ICLR) [paper]

  • Artemy Kolchinsky, Brendan D. Tracey, Steven Van Kuyk: Caveats for information bottleneck in deterministic scenarios (ICLR) [paper]

  • Vincent Pacelli, Anirudha Majumdar: Task-Driven Estimation and Control via Information Bottlenecks (ICRA) [paper]

  • Nilanjana Datta, Christoph Hirche, Andreas J. Winter: Convexity and Operational Interpretation of the Quantum Information Bottleneck Function (ISIT) [paper]

  • Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin, Katja Hofmann: Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck (NeurIPS) [paper]

  • Qi Wang, Claire Boudreau, Qixing Luo, Pang-Ning Tan, Jiayu Zhou: Deep Multi-view Information Bottleneck (SDM) [paper]

  • Tailin Wu, Ian Fischer, Isaac L. Chuang, Max Tegmark: Learnability for the Information Bottleneck (UAI) [paper]

  • Liwen Wang, Takumi Takahashi, Shinsuke Ibi, Seiichi Sampei: A Study on Replica Generation Using LUT Based on Information Bottleneck for MF-GaBP in Massive MIMO Detection (VTC-Fall) [paper]

  • Steffen Steiner, Volker Kuehn: Optimization Of Distributed Quantizers Using An Alternating Information Bottleneck Approach (WSA) [paper]

2018

  • Jan Lewandowsky, Gerhard Bauch: Information-Optimum LDPC Decoders Based on the Information Bottleneck Method (IEEE Access) [paper]

  • Yuejun Guo, Qing Xu, Mateu Sbert: IBVis: Interactive Visual Analytics for Information Bottleneck Based Trajectory Clustering (Entropy) [paper]

  • S. Y. Kung: A Compressive Privacy approach to Generalized Information Bottleneck and Privacy Funnel problems (J. Franklin Institute) [paper]

  • Jacek Iwanski, Grazyna Suchacka, Grzegorz Chodak: Application of the Information Bottleneck method to discover user profiles in a Web store (J. Org. Computing and E. Commerce) [paper]

  • Shyju Wilson, C. Krishna Mohan: An Information Bottleneck Approach to Optimize the Dictionary of Visual Data (IEEE Trans. Multimedia) [paper]

  • Parinaz Farajiparvar, Ahmad Beirami, Matthew S. Nokleby: Information Bottleneck Methods for Distributed Learning (Allerton) [paper]

  • Shayan Hassanpour, Dirk Wübben, Armin Dekorsy: A Graph-Based Message Passing Approach for Noisy Source Coding via Information Bottleneck Principle (GLOBECOM) [paper]

  • Andrew M. Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan D. Tracey, David Daniel Cox: On the Information Bottleneck Theory of Deep Learning (ICLR) [paper]

  • Aleksander Wieczorek, Mario Wieser, Damian Murezzan, Volker Roth: Learning Sparse Latent Representations with the Deep Copula Information Bottleneck (ICLR) [paper]

  • Bin Dai, Chen Zhu, Baining Guo, David P. Wipf: Compressing Neural Networks using the Variational Information Bottleneck (ICML) [paper]

  • Jan Lewandowsky, Gerhard Bauch, Matthias Tschauner, Peter Oppermann: Design and Evaluation of Information Bottleneck LDPC Decoders for Software Defined Radios (ICSPCS) [paper]

  • Shayan Hassanpour, Dirk Wübben, Armin Dekorsy: On the Equivalence of Two Information Bottleneck-Based Routines Devised for Joint Source-Channel Coding (ICT) [paper]

  • Nauman Dawalatabad, Jom Kuriakose, Chellu Chandra Sekhar, Hema A. Murthy: Information Bottleneck Based Percussion Instrument Diarization System for Taniavartanam Segments of Carnatic Music Concerts (INTERSPEECH) [paper]

  • Georg Pichler, Günther Koliander: Information Bottleneck on General Alphabets (ISIT) [paper]

  • Matías Vera, Pablo Piantanida, Leonardo Rey Vega: The Role of the Information Bottleneck in Representation Learning (ISIT) [paper]

  • Shayan Hassanpour, Dirk Wübben, Armin Dekorsy: A Graph-Based Message Passing Approach for Joint Source-Channel Coding via Information Bottleneck Principle (ISTC) [paper]

  • Jan Lewandowsky, Maximilian Stark, Gerhard Bauch: A Discrete Information Bottleneck Receiver with Iterative Decision Feedback Channel Estimation (ISTC) [paper]

  • Duo Xu, Faramarz Fekri: Time Series Prediction Via Recurrent Neural Networks with the Information Bottleneck Principle (SPAWC) [paper]

  • Shayan Hassanpour, Dirk Wübben, Armin Dekorsy: On the equivalence of double maxima and KL-means for information bottleneck-based source coding (WCNC) [paper]

  • Maximilian Stark, Syed Aizaz Ali Shah, Gerhard Bauch: Polar code construction using the information bottleneck method (WCNC Workshops) [paper]

2017

  • Xiaoqiang Yan, Shizhe Hu, Yangdong Ye: Multi-task Clustering of Human Actions by Sharing Information (IEEE CVPR) [paper]

2016

  • Xiaoqiang Yan, Yangdong Ye, Xueying Qiu: Unsupervised Human Action Categorization with Consensus Information Bottleneck Method (IJCAI) [paper]

2015

  • Xiaoqiang Yan, Yangdong Ye, Zhengzheng Lou: Unsupervised video categorization based on multivariate information bottleneck method (Knowl.-Based Syst.) [paper]

  • Yangdong Ye, Ruina Liu, Zhengzheng Lou: Incorporating side information into multivariate Information Bottleneck for generating alternative clusterings (Pattern Recognition Letters) [paper]

  • Naftali Tishby, Noga Zaslavsky: Deep learning and the information bottleneck principle (IEEE ITW) [paper]

2013

  • Zhengzheng Lou, Yangdong Ye, Xiaoqiang Yan: The Multi-Feature Information Bottleneck with Application to Unsupervised Image Categorization (IJCAI) [paper]

2011

  • Yangdong Ye, Yongli Ren, Gang Li: Using local density information to improve IB algorithms (Pattern Recognition Letters) [paper]

  • Huaqiang Yuan, Yangdong Ye: Iterative sIB algorithm (Pattern Recognition Letters) [paper]

2010

  • Zhengzheng Lou, Yangdong Ye, Dong Liu: Unsupervised object category discovery via information bottleneck method (ACM MM) [paper]

2008

  • Yongli Ren , Yangdong Ye , Gang Li: The density connectivity information bottleneck (ICYCS) [paper]

  • Brian Fulkerson,Andrea Vedaldi,Stefano Soatto: Localizing objects with smart dictionaries (ECCV) [paper]

  • Yongli Ren, Yangdong Ye, Gang Li: The Density-Based Agglomerative Information Bottleneck (PRICAI) [paper]

  • Lei Wang, Jianjia Zhang, Luping Zhou: A Fast Approximate AIB Algorithm for Distributional Word Clustering (CVPR) [paper]

2006

  • Winston H. Hsu, Lyndon S. Kennedy, Shih-Fu Chang: Video search reranking via information bottleneck principle (ACM MM) [paper]
  • Noam Slonim, Nir Friedman, Naftali Tishby: Multivariate information bottleneck (Neural computation) [paper]

2005

  • Chechik, Gal, Globerson, Amir, Tishby, Naftali, Weiss, Yair: Information bottleneck for Gaussian variables (JMLR) [paper]

2002

  • Noam Slonim, Nir Friedman, Naftali Tishby: Unsupervised Document Classification Using Sequential Information Maximization (SIGIR) [paper]

2001

  • Naftali Tishby, Noam Slonim: Data clustering by markovian relaxation and the information bottleneck method (NIPS) [paper]

2000

  • Noam Slonim, Naftali Tishby: Document clustering using word clusters via the information bottleneck method (ACM SIGIR) [paper]
  • Noam Slonim, Naftali Tishby: Agglomerative information bottleneck (NIPS) [paper]

1999

  • Noam Slonim,Naftali Tishby: Agglomerative Information Bottleneck (NIPS) [paper]

Researchers

  • Naftali Tishby, Hebrew University, Jerusalem, Israel. [Founder of Information Bottleneck]
  • Yangdong Ye, Zhengzhou University, Zhengzhou, China.
  • Qing Xu, Tianjin University, Tianjin, China.
  • Tailin Wu, Stanford University, California, China.

Citing

@ARTICLE{2024IBSurvey,
  author={Hu, Shizhe and Lou, Zhengzheng and Yan, Xiaoqiang and Ye, Yangdong},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={A Survey on Information Bottleneck}, 
  year={2024},
  volume={},
  number={},
  pages={1-20},
  doi={10.1109/TPAMI.2024.3366349}
}

Contact

For any questions regard this repository, please directly contact Shizhe Hu.

License

To the extent possible under law, Shizhe Hu has retained all copyright and related or neighboring rights to this work.

About

Papers, codes, datasets, researchers on information bottleneck

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published