-
Notifications
You must be signed in to change notification settings - Fork 62
/
simplet5.py
483 lines (431 loc) · 17.9 KB
/
simplet5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import torch
import numpy as np
import pandas as pd
from transformers import (
T5ForConditionalGeneration,
MT5ForConditionalGeneration,
ByT5Tokenizer,
PreTrainedTokenizer,
T5TokenizerFast as T5Tokenizer,
MT5TokenizerFast as MT5Tokenizer,
)
from transformers import AutoTokenizer
from torch.optim import AdamW
from torch.utils.data import Dataset, DataLoader
from transformers import AutoModelWithLMHead, AutoTokenizer
import pytorch_lightning as pl
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
from pytorch_lightning.callbacks.progress import TQDMProgressBar
torch.cuda.empty_cache()
pl.seed_everything(42)
class PyTorchDataModule(Dataset):
""" PyTorch Dataset class """
def __init__(
self,
data: pd.DataFrame,
tokenizer: PreTrainedTokenizer,
source_max_token_len: int = 512,
target_max_token_len: int = 512,
):
"""
initiates a PyTorch Dataset Module for input data
Args:
data (pd.DataFrame): input pandas dataframe. Dataframe must have 2 column --> "source_text" and "target_text"
tokenizer (PreTrainedTokenizer): a PreTrainedTokenizer (T5Tokenizer, MT5Tokenizer, or ByT5Tokenizer)
source_max_token_len (int, optional): max token length of source text. Defaults to 512.
target_max_token_len (int, optional): max token length of target text. Defaults to 512.
"""
self.tokenizer = tokenizer
self.data = data
self.source_max_token_len = source_max_token_len
self.target_max_token_len = target_max_token_len
def __len__(self):
""" returns length of data """
return len(self.data)
def __getitem__(self, index: int):
""" returns dictionary of input tensors to feed into T5/MT5 model"""
data_row = self.data.iloc[index]
source_text = data_row["source_text"]
source_text_encoding = self.tokenizer(
source_text,
max_length=self.source_max_token_len,
padding="max_length",
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
target_text_encoding = self.tokenizer(
data_row["target_text"],
max_length=self.target_max_token_len,
padding="max_length",
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
labels = target_text_encoding["input_ids"]
labels[
labels == 0
] = -100 # to make sure we have correct labels for T5 text generation
return dict(
source_text_input_ids=source_text_encoding["input_ids"].flatten(),
source_text_attention_mask=source_text_encoding["attention_mask"].flatten(),
labels=labels.flatten(),
labels_attention_mask=target_text_encoding["attention_mask"].flatten(),
)
class LightningDataModule(pl.LightningDataModule):
""" PyTorch Lightning data class """
def __init__(
self,
train_df: pd.DataFrame,
test_df: pd.DataFrame,
tokenizer: PreTrainedTokenizer,
batch_size: int = 4,
source_max_token_len: int = 512,
target_max_token_len: int = 512,
num_workers: int = 2,
):
"""
initiates a PyTorch Lightning Data Module
Args:
train_df (pd.DataFrame): training dataframe. Dataframe must contain 2 columns --> "source_text" & "target_text"
test_df (pd.DataFrame): validation dataframe. Dataframe must contain 2 columns --> "source_text" & "target_text"
tokenizer (PreTrainedTokenizer): PreTrainedTokenizer (T5Tokenizer, MT5Tokenizer, or ByT5Tokenizer)
batch_size (int, optional): batch size. Defaults to 4.
source_max_token_len (int, optional): max token length of source text. Defaults to 512.
target_max_token_len (int, optional): max token length of target text. Defaults to 512.
"""
super().__init__()
self.train_df = train_df
self.test_df = test_df
self.batch_size = batch_size
self.tokenizer = tokenizer
self.source_max_token_len = source_max_token_len
self.target_max_token_len = target_max_token_len
self.num_workers = num_workers
def setup(self, stage=None):
self.train_dataset = PyTorchDataModule(
self.train_df,
self.tokenizer,
self.source_max_token_len,
self.target_max_token_len,
)
self.test_dataset = PyTorchDataModule(
self.test_df,
self.tokenizer,
self.source_max_token_len,
self.target_max_token_len,
)
def train_dataloader(self):
""" training dataloader """
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers,
)
def test_dataloader(self):
""" test dataloader """
return DataLoader(
self.test_dataset,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
)
def val_dataloader(self):
""" validation dataloader """
return DataLoader(
self.test_dataset,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
)
class LightningModel(pl.LightningModule):
""" PyTorch Lightning Model class"""
def __init__(
self,
tokenizer,
model,
outputdir: str = "outputs",
save_only_last_epoch: bool = False,
):
"""
initiates a PyTorch Lightning Model
Args:
tokenizer : T5/MT5/ByT5 tokenizer
model : T5/MT5/ByT5 model
outputdir (str, optional): output directory to save model checkpoints. Defaults to "outputs".
save_only_last_epoch (bool, optional): If True, save just the last epoch else models are saved for every epoch
"""
super().__init__()
self.model = model
self.tokenizer = tokenizer
self.outputdir = outputdir
self.average_training_loss = None
self.average_validation_loss = None
self.save_only_last_epoch = save_only_last_epoch
def forward(self, input_ids, attention_mask, decoder_attention_mask, labels=None):
""" forward step """
output = self.model(
input_ids,
attention_mask=attention_mask,
labels=labels,
decoder_attention_mask=decoder_attention_mask,
)
return output.loss, output.logits
def training_step(self, batch, batch_size):
""" training step """
input_ids = batch["source_text_input_ids"]
attention_mask = batch["source_text_attention_mask"]
labels = batch["labels"]
labels_attention_mask = batch["labels_attention_mask"]
loss, outputs = self(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_attention_mask=labels_attention_mask,
labels=labels,
)
self.log(
"train_loss", loss, prog_bar=True, logger=True, on_epoch=True, on_step=True
)
return loss
def validation_step(self, batch, batch_size):
""" validation step """
input_ids = batch["source_text_input_ids"]
attention_mask = batch["source_text_attention_mask"]
labels = batch["labels"]
labels_attention_mask = batch["labels_attention_mask"]
loss, outputs = self(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_attention_mask=labels_attention_mask,
labels=labels,
)
self.log(
"val_loss", loss, prog_bar=True, logger=True, on_epoch=True, on_step=True
)
return loss
def test_step(self, batch, batch_size):
""" test step """
input_ids = batch["source_text_input_ids"]
attention_mask = batch["source_text_attention_mask"]
labels = batch["labels"]
labels_attention_mask = batch["labels_attention_mask"]
loss, outputs = self(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_attention_mask=labels_attention_mask,
labels=labels,
)
self.log("test_loss", loss, prog_bar=True, logger=True)
return loss
def configure_optimizers(self):
""" configure optimizers """
return AdamW(self.parameters(), lr=0.0001)
def training_epoch_end(self, training_step_outputs):
""" save tokenizer and model on epoch end """
self.average_training_loss = np.round(
torch.mean(torch.stack([x["loss"] for x in training_step_outputs])).item(),
4,
)
path = f"{self.outputdir}/simplet5-epoch-{self.current_epoch}-train-loss-{str(self.average_training_loss)}-val-loss-{str(self.average_validation_loss)}"
if self.save_only_last_epoch:
if self.current_epoch == self.trainer.max_epochs - 1:
self.tokenizer.save_pretrained(path)
self.model.save_pretrained(path)
else:
self.tokenizer.save_pretrained(path)
self.model.save_pretrained(path)
def validation_epoch_end(self, validation_step_outputs):
_loss = [x.cpu() for x in validation_step_outputs]
self.average_validation_loss = np.round(
torch.mean(torch.stack(_loss)).item(),
4,
)
class SimpleT5:
""" Custom SimpleT5 class """
def __init__(self) -> None:
""" initiates SimpleT5 class """
pass
def from_pretrained(self, model_type="t5", model_name="t5-base") -> None:
"""
loads T5/MT5 Model model for training/finetuning
Args:
model_type (str, optional): "t5" or "mt5" . Defaults to "t5".
model_name (str, optional): exact model architecture name, "t5-base" or "t5-large". Defaults to "t5-base".
"""
if model_type == "t5":
self.tokenizer = T5Tokenizer.from_pretrained(f"{model_name}")
self.model = T5ForConditionalGeneration.from_pretrained(
f"{model_name}", return_dict=True
)
elif model_type == "mt5":
self.tokenizer = MT5Tokenizer.from_pretrained(f"{model_name}")
self.model = MT5ForConditionalGeneration.from_pretrained(
f"{model_name}", return_dict=True
)
elif model_type == "byt5":
self.tokenizer = ByT5Tokenizer.from_pretrained(f"{model_name}")
self.model = T5ForConditionalGeneration.from_pretrained(
f"{model_name}", return_dict=True
)
def train(
self,
train_df: pd.DataFrame,
eval_df: pd.DataFrame,
source_max_token_len: int = 512,
target_max_token_len: int = 512,
batch_size: int = 8,
max_epochs: int = 5,
use_gpu: bool = True,
outputdir: str = "outputs",
early_stopping_patience_epochs: int = 0, # 0 to disable early stopping feature
precision=32,
logger="default",
dataloader_num_workers: int = 2,
save_only_last_epoch: bool = False,
):
"""
trains T5/MT5 model on custom dataset
Args:
train_df (pd.DataFrame): training datarame. Dataframe must have 2 column --> "source_text" and "target_text"
eval_df ([type], optional): validation datarame. Dataframe must have 2 column --> "source_text" and "target_text"
source_max_token_len (int, optional): max token length of source text. Defaults to 512.
target_max_token_len (int, optional): max token length of target text. Defaults to 512.
batch_size (int, optional): batch size. Defaults to 8.
max_epochs (int, optional): max number of epochs. Defaults to 5.
use_gpu (bool, optional): if True, model uses gpu for training. Defaults to True.
outputdir (str, optional): output directory to save model checkpoints. Defaults to "outputs".
early_stopping_patience_epochs (int, optional): monitors val_loss on epoch end and stops training, if val_loss does not improve after the specied number of epochs. set 0 to disable early stopping. Defaults to 0 (disabled)
precision (int, optional): sets precision training - Double precision (64), full precision (32) or half precision (16). Defaults to 32.
logger (pytorch_lightning.loggers) : any logger supported by PyTorch Lightning. Defaults to "default". If "default", pytorch lightning default logger is used.
dataloader_num_workers (int, optional): number of workers in train/test/val dataloader
save_only_last_epoch (bool, optional): If True, saves only the last epoch else models are saved at every epoch
"""
self.data_module = LightningDataModule(
train_df,
eval_df,
self.tokenizer,
batch_size=batch_size,
source_max_token_len=source_max_token_len,
target_max_token_len=target_max_token_len,
num_workers=dataloader_num_workers,
)
self.T5Model = LightningModel(
tokenizer=self.tokenizer,
model=self.model,
outputdir=outputdir,
save_only_last_epoch=save_only_last_epoch,
)
# add callbacks
callbacks = [TQDMProgressBar(refresh_rate=5)]
if early_stopping_patience_epochs > 0:
early_stop_callback = EarlyStopping(
monitor="val_loss",
min_delta=0.00,
patience=early_stopping_patience_epochs,
verbose=True,
mode="min",
)
callbacks.append(early_stop_callback)
# add gpu support
gpus = 1 if use_gpu else 0
# add logger
loggers = True if logger == "default" else logger
# prepare trainer
trainer = pl.Trainer(
logger=loggers,
callbacks=callbacks,
max_epochs=max_epochs,
gpus=gpus,
precision=precision,
log_every_n_steps=1,
)
# fit trainer
trainer.fit(self.T5Model, self.data_module)
def load_model(
self, model_type: str = "t5", model_dir: str = "outputs", use_gpu: bool = False
):
"""
loads a checkpoint for inferencing/prediction
Args:
model_type (str, optional): "t5" or "mt5". Defaults to "t5".
model_dir (str, optional): path to model directory. Defaults to "outputs".
use_gpu (bool, optional): if True, model uses gpu for inferencing/prediction. Defaults to True.
"""
if model_type == "t5":
self.model = T5ForConditionalGeneration.from_pretrained(f"{model_dir}")
self.tokenizer = T5Tokenizer.from_pretrained(f"{model_dir}")
elif model_type == "mt5":
self.model = MT5ForConditionalGeneration.from_pretrained(f"{model_dir}")
self.tokenizer = MT5Tokenizer.from_pretrained(f"{model_dir}")
elif model_type == "byt5":
self.model = T5ForConditionalGeneration.from_pretrained(f"{model_dir}")
self.tokenizer = ByT5Tokenizer.from_pretrained(f"{model_dir}")
if use_gpu:
if torch.cuda.is_available():
self.device = torch.device("cuda")
else:
raise "exception ---> no gpu found. set use_gpu=False, to use CPU"
else:
self.device = torch.device("cpu")
self.model = self.model.to(self.device)
def predict(
self,
source_text: str,
max_length: int = 512,
num_return_sequences: int = 1,
num_beams: int = 2,
top_k: int = 50,
top_p: float = 0.95,
do_sample: bool = True,
repetition_penalty: float = 2.5,
length_penalty: float = 1.0,
early_stopping: bool = True,
skip_special_tokens: bool = True,
clean_up_tokenization_spaces: bool = True,
):
"""
generates prediction for T5/MT5 model
Args:
source_text (str): any text for generating predictions
max_length (int, optional): max token length of prediction. Defaults to 512.
num_return_sequences (int, optional): number of predictions to be returned. Defaults to 1.
num_beams (int, optional): number of beams. Defaults to 2.
top_k (int, optional): Defaults to 50.
top_p (float, optional): Defaults to 0.95.
do_sample (bool, optional): Defaults to True.
repetition_penalty (float, optional): Defaults to 2.5.
length_penalty (float, optional): Defaults to 1.0.
early_stopping (bool, optional): Defaults to True.
skip_special_tokens (bool, optional): Defaults to True.
clean_up_tokenization_spaces (bool, optional): Defaults to True.
Returns:
list[str]: returns predictions
"""
input_ids = self.tokenizer.encode(
source_text, return_tensors="pt", add_special_tokens=True
)
input_ids = input_ids.to(self.device)
generated_ids = self.model.generate(
input_ids=input_ids,
num_beams=num_beams,
max_length=max_length,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
early_stopping=early_stopping,
top_p=top_p,
top_k=top_k,
num_return_sequences=num_return_sequences,
)
preds = [
self.tokenizer.decode(
g,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
)
for g in generated_ids
]
return preds