-
Notifications
You must be signed in to change notification settings - Fork 2
/
T5.py
470 lines (418 loc) · 20.5 KB
/
T5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
from transformers import (AdamW, T5Tokenizer, T5ForConditionalGeneration, WEIGHTS_NAME,CONFIG_NAME)
from copy import deepcopy
import torch
from torch.nn import CrossEntropyLoss
import time
class MiniT5(T5ForConditionalGeneration):
def __init__(self, config):
super().__init__(config)
#make a copy of decoder for dst
decoder_config = deepcopy(config)
decoder_config.is_decoder = True
self.dst_decoder = type(self.decoder)(decoder_config, self.shared)
self.dst_decoder.load_state_dict(self.decoder.state_dict())
self.dst_lm_head = type(self.lm_head)(config.d_model, config.vocab_size, bias=False)
self.dst_lm_head.load_state_dict(self.lm_head.state_dict())
def tie_decoder(self):
decoder_config = deepcopy(self.config)
decoder_config.is_decoder = True
self.dst_decoder = type(self.decoder)(decoder_config, self.shared)
self.dst_decoder.load_state_dict(self.decoder.state_dict())
self.dst_lm_head = type(self.lm_head)(self.config.d_model, self.config.vocab_size, bias=False)
self.dst_lm_head.load_state_dict(self.lm_head.state_dict())
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_outputs=None,
decoder_input_ids=None,
decoder_attention_mask=None,
lm_labels=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
head_mask=None,
):
# DST forward or Response generation forward?
if decoder_input_ids[0,0] == self.config.decoder_start_token_id:
decoder = self.dst_decoder
lm_head = self.dst_lm_head
else:
decoder = self.decoder
lm_head = self.lm_head
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.encoder(
input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask
)
hidden_states = encoder_outputs[0]
if lm_labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(lm_labels)
# Decode
decoder_outputs = decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=head_mask,
)
sequence_output = decoder_outputs[0]
# Rescale output before projecting on vocab
sequence_output = sequence_output * (self.model_dim ** -0.5)
lm_logits = lm_head(sequence_output)
decoder_outputs = (lm_logits,)
if lm_labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1))
decoder_outputs = (
loss,
) + decoder_outputs
return decoder_outputs + encoder_outputs
@torch.no_grad()
def generate(
self,
input_ids=None,
max_length=None,
min_length=None,
do_sample=None,
early_stopping=None,
num_beams=None,
temperature=None,
top_k=None,
top_p=None,
repetition_penalty=None,
bad_words_ids=None,
bos_token_id=None,
pad_token_id=None,
eos_token_id=None,
length_penalty=None,
no_repeat_ngram_size=None,
num_return_sequences=None,
attention_mask=None,
decoder_start_token_id=None,
):
# We cannot generate if the model does not have a LM head
if self.get_output_embeddings() is None:
raise AttributeError(
"You tried to generate sequences with a model that does not have a LM Head."
"Please use another model class (e.g. `OpenAIGPTLMHeadModel`, `XLNetLMHeadModel`, `GPT2LMHeadModel`, `CTRLLMHeadModel`, `T5WithLMHeadModel`, `TransfoXLLMHeadModel`, `XLMWithLMHeadModel`, `BartForConditionalGeneration` )"
)
max_length = max_length if max_length is not None else self.config.max_length
min_length = min_length if min_length is not None else self.config.min_length
do_sample = do_sample if do_sample is not None else self.config.do_sample
early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping
num_beams = num_beams if num_beams is not None else self.config.num_beams
temperature = temperature if temperature is not None else self.config.temperature
top_k = top_k if top_k is not None else self.config.top_k
top_p = top_p if top_p is not None else self.config.top_p
repetition_penalty = repetition_penalty if repetition_penalty is not None else self.config.repetition_penalty
bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id
pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty
no_repeat_ngram_size = (
no_repeat_ngram_size if no_repeat_ngram_size is not None else self.config.no_repeat_ngram_size
)
bad_words_ids = bad_words_ids if bad_words_ids is not None else self.config.bad_words_ids
num_return_sequences = (
num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
)
decoder_start_token_id = (
decoder_start_token_id if decoder_start_token_id is not None else self.config.decoder_start_token_id
)
if input_ids is not None:
batch_size = input_ids.shape[0] # overriden by the input batch_size
else:
batch_size = 1
assert isinstance(max_length, int) and max_length > 0, "`max_length` should be a strictly positive integer."
assert isinstance(min_length, int) and min_length >= 0, "`min_length` should be a positive integer."
assert isinstance(do_sample, bool), "`do_sample` should be a boolean."
assert isinstance(early_stopping, bool), "`early_stopping` should be a boolean."
assert isinstance(num_beams, int) and num_beams > 0, "`num_beams` should be a strictly positive integer."
assert temperature > 0, "`temperature` should be strictly positive."
assert isinstance(top_k, int) and top_k >= 0, "`top_k` should be a positive integer."
assert 0 <= top_p <= 1, "`top_p` should be between 0 and 1."
assert repetition_penalty >= 1.0, "`repetition_penalty` should be >= 1."
assert input_ids is not None or (
isinstance(bos_token_id, int) and bos_token_id >= 0
), "If input_ids is not defined, `bos_token_id` should be a positive integer."
assert pad_token_id is None or (
isinstance(pad_token_id, int) and (pad_token_id >= 0)
), "`pad_token_id` should be a positive integer."
assert (eos_token_id is None) or (
isinstance(eos_token_id, int) and (eos_token_id >= 0)
), "`eos_token_id` should be a positive integer."
assert length_penalty > 0, "`length_penalty` should be strictly positive."
assert (
isinstance(no_repeat_ngram_size, int) and no_repeat_ngram_size >= 0
), "`no_repeat_ngram_size` should be a positive integer."
assert (
isinstance(num_return_sequences, int) and num_return_sequences > 0
), "`num_return_sequences` should be a strictly positive integer."
assert (
bad_words_ids is None or isinstance(bad_words_ids, list) and isinstance(bad_words_ids[0], list)
), "`bad_words_ids` is either `None` or a list of lists of tokens that should not be generated"
if input_ids is None:
assert isinstance(bos_token_id, int) and bos_token_id >= 0, (
"you should either supply a context to complete as `input_ids` input "
"or a `bos_token_id` (integer >= 0) as a first token to start the generation."
)
input_ids = torch.full(
(batch_size, 1), bos_token_id, dtype=torch.long, device=next(self.parameters()).device,
)
else:
assert input_ids.dim() == 2, "Input prompt should be of shape (batch_size, sequence length)."
# not allow to duplicate outputs when greedy decoding
if do_sample is False:
if num_beams == 1:
# no_beam_search greedy generation conditions
assert (
num_return_sequences == 1
), "Greedy decoding will always produce the same output for num_beams == 1 and num_return_sequences > 1. Please set num_return_sequences = 1"
else:
# beam_search greedy generation conditions
assert (
num_beams >= num_return_sequences
), "Greedy beam search decoding cannot return more sequences than it has beams. Please set num_beams >= num_return_sequences"
# create attention mask if necessary
if (attention_mask is None) and (pad_token_id is not None) and (pad_token_id in input_ids):
attention_mask = input_ids.ne(pad_token_id).long()
elif attention_mask is None:
attention_mask = input_ids.new_ones(input_ids.shape)
# set pad_token_id to eos_token_id if not set. Important that this is done after
# attention_mask is created
if pad_token_id is None and eos_token_id is not None:
print(
"Setting `pad_token_id` to {} (first `eos_token_id`) to generate sequence".format(eos_token_id)
)
pad_token_id = eos_token_id
# current position and vocab size
vocab_size = self.config.vocab_size
# set effective batch size and effective batch multiplier according to do_sample
if do_sample:
effective_batch_size = batch_size * num_return_sequences
effective_batch_mult = num_return_sequences
else:
effective_batch_size = batch_size
effective_batch_mult = 1
if self.config.is_encoder_decoder:
if decoder_start_token_id is None:
decoder_start_token_id = bos_token_id
assert (
decoder_start_token_id is not None
), "decoder_start_token_id or bos_token_id has to be defined for encoder-decoder generation"
assert hasattr(self, "get_encoder"), "{} should have a 'get_encoder' function defined".format(self)
assert callable(self.get_encoder), "{} should be a method".format(self.get_encoder)
# get encoder and store encoder outputs
encoder = self.get_encoder()
encoder_outputs = encoder(input_ids, attention_mask=attention_mask)
# Expand input ids if num_beams > 1 or num_return_sequences > 1
if num_return_sequences > 1 or num_beams > 1:
input_ids_len = input_ids.shape[-1]
input_ids = input_ids.unsqueeze(1).expand(batch_size, effective_batch_mult * num_beams, input_ids_len)
attention_mask = attention_mask.unsqueeze(1).expand(
batch_size, effective_batch_mult * num_beams, input_ids_len
)
input_ids = input_ids.contiguous().view(
effective_batch_size * num_beams, input_ids_len
) # shape: (batch_size * num_return_sequences * num_beams, cur_len)
attention_mask = attention_mask.contiguous().view(
effective_batch_size * num_beams, input_ids_len
) # shape: (batch_size * num_return_sequences * num_beams, cur_len)
if self.config.is_encoder_decoder:
# create empty decoder_input_ids
if isinstance(decoder_start_token_id, int):
input_ids = torch.full(
(effective_batch_size * num_beams, 1),
decoder_start_token_id,
dtype=torch.long,
device=next(self.parameters()).device,
)
else:
# pass a batch of start tokens, but doesn't support beam search and sampling
input_ids=decoder_start_token_id
cur_len = 1
assert (
batch_size == encoder_outputs[0].shape[0]
), f"expected encoder_outputs[0] to have 1st dimension bs={batch_size}, got {encoder_outputs[0].shape[0]} "
# expand batch_idx to assign correct encoder output for expanded input_ids (due to num_beams > 1 and num_return_sequences > 1)
expanded_batch_idxs = (
torch.arange(batch_size)
.view(-1, 1)
.repeat(1, num_beams * effective_batch_mult)
.view(-1)
.to(input_ids.device)
)
# expand encoder_outputs
encoder_outputs = (encoder_outputs[0].index_select(0, expanded_batch_idxs), *encoder_outputs[1:])
else:
encoder_outputs = None
cur_len = input_ids.shape[-1]
if num_beams > 1:
output = self._generate_beam_search(
input_ids,
cur_len=cur_len,
max_length=max_length,
min_length=min_length,
do_sample=do_sample,
early_stopping=early_stopping,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
bad_words_ids=bad_words_ids,
bos_token_id=bos_token_id,
pad_token_id=pad_token_id,
decoder_start_token_id=decoder_start_token_id,
eos_token_id=eos_token_id,
batch_size=effective_batch_size,
num_return_sequences=num_return_sequences,
length_penalty=length_penalty,
num_beams=num_beams,
vocab_size=vocab_size,
encoder_outputs=encoder_outputs,
attention_mask=attention_mask,
)
else:
output = self._generate_no_beam_search(
input_ids,
cur_len=cur_len,
max_length=max_length,
min_length=min_length,
do_sample=do_sample,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
bad_words_ids=bad_words_ids,
bos_token_id=bos_token_id,
pad_token_id=pad_token_id,
decoder_start_token_id=decoder_start_token_id,
eos_token_id=eos_token_id,
batch_size=effective_batch_size,
encoder_outputs=encoder_outputs,
attention_mask=attention_mask,
)
return output
def inference(
self,
tokenizer,
reader,
prev,
input_ids=None,
attention_mask=None,
turn_domain=None,
db=None
):
#start = time.time()
dst_outputs = self.generate(input_ids=input_ids,
attention_mask=attention_mask,
eos_token_id=tokenizer.encode("<eos_b>")[0],
decoder_start_token_id=self.config.decoder_start_token_id,
max_length=200,
)
#dst_time = time.time()-start
#print(dst_time)
dst_outputs = dst_outputs.tolist()
#length = len(dst_outputs[0])
#print(dst_outputs)
# DST_UPDATE -> DST
#check whether need to add eos
#dst_outputs = [dst+tokenizer.encode("<eos_b>") for dst in dst_outputs]
batch_size = input_ids.shape[0]
constraint_dict_updates = [reader.bspan_to_constraint_dict(tokenizer.decode(dst_outputs[i])) for i in range(batch_size)]
if prev['bspn']:
# update the belief state
dst_outputs = [reader.update_bspn(prev_bspn=prev['bspn'][i], bspn_update=dst_outputs[i]) for i in range(batch_size)]
# compute the DB state using the updated domain
db_state = []
for bi, bspn_list in enumerate(dst_outputs):
# if not constraint_dict_updates[bi]:
# # if nothing to update
# db_state.append(tokenizer.encode("[db_state0]"))
# else:
# turn_domain = 'general'
# for domain in constraint_dict_updates[bi].keys():
# #the last updated domain
# turn_domain=domain
# follow damd for fair comparison
db_vector = reader.bspan_to_DBpointer(tokenizer.decode(bspn_list), turn_domain[bi])
if sum(db_vector)==0:
db_state.append(tokenizer.encode("[db_state0]"))
else:
db_state.append([tokenizer.encode("[db_state0]")[0] + db_vector.index(1)+1])
# use gold booking pointer, because we cannot issue BOOKING API
if db[bi][0]>=tokenizer.encode("[db_state0+bookfail]")[0]:
if db[bi][0]>=tokenizer.encode("[db_state0+booksuccess]")[0]:
db_state[-1][0]+=10
else:
db_state[-1][0]+=5
db_state = torch.tensor(
db_state,
dtype=torch.long,
device=next(self.parameters()).device,
)
resp_outputs = self.generate(input_ids=input_ids,
attention_mask=attention_mask,
eos_token_id=tokenizer.encode("<eos_r>")[0],
decoder_start_token_id=db_state,
max_length=200,
)
resp_outputs = resp_outputs[:,1:].tolist() #skip DB state
# print("DST:", tokenizer.decode(dst_outputs[0]))
# print("RESP:", tokenizer.decode(resp_outputs[0]))
return dst_outputs, resp_outputs#, dst_time, length
def inference_sequicity(
self,
tokenizer,
reader,
prev,
input_ids=None,
attention_mask=None,
turn_domain=None,
db=None
):
#start = time.time()
dst_outputs = self.generate(input_ids=input_ids,
attention_mask=attention_mask,
eos_token_id=tokenizer.encode("<eos_b>")[0],
decoder_start_token_id=self.config.decoder_start_token_id,
max_length=200,
)
#dst_time = time.time() - start
#print(dst_time)
dst_outputs = dst_outputs.tolist()
#length = len(dst_outputs[0])
# compute the DB state using the updated domain
db_state = []
for bi, bspn_list in enumerate(dst_outputs):
db_vector = reader.bspan_to_DBpointer(tokenizer.decode(bspn_list), turn_domain[bi])
if sum(db_vector)==0:
db_state.append(tokenizer.encode("[db_state0]"))
else:
db_state.append([tokenizer.encode("[db_state0]")[0] + db_vector.index(1)+1])
# use gold booking pointer, because we cannot issue BOOKING API
if db[bi][0]>=tokenizer.encode("[db_state0+bookfail]")[0]:
if db[bi][0]>=tokenizer.encode("[db_state0+booksuccess]")[0]:
db_state[-1][0]+=10
else:
db_state[-1][0]+=5
db_state = torch.tensor(
db_state,
dtype=torch.long,
device=next(self.parameters()).device,
)
resp_outputs = self.generate(input_ids=input_ids,
attention_mask=attention_mask,
eos_token_id=tokenizer.encode("<eos_r>")[0],
decoder_start_token_id=db_state,
max_length=200,
)
resp_outputs = resp_outputs[:,1:].tolist() #skip DB state
# print("DST:", tokenizer.decode(dst_outputs[0]))
# print("RESP:", tokenizer.decode(resp_outputs[0]))
return dst_outputs, resp_outputs#, dst_time, length