forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssd300_32x8_36e_openimages.py
78 lines (78 loc) · 2.59 KB
/
ssd300_32x8_36e_openimages.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
_base_ = [
'../_base_/models/ssd300.py', '../_base_/datasets/openimages_detection.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_1x.py'
]
model = dict(
bbox_head=dict(
num_classes=601,
anchor_generator=dict(basesize_ratio_range=(0.2, 0.9))))
# dataset settings
dataset_type = 'OpenImagesDataset'
data_root = 'data/OpenImages/'
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations', with_bbox=True, normed_bbox=True),
dict(
type='PhotoMetricDistortion',
brightness_delta=32,
contrast_range=(0.5, 1.5),
saturation_range=(0.5, 1.5),
hue_delta=18),
dict(
type='Expand',
mean=img_norm_cfg['mean'],
to_rgb=img_norm_cfg['to_rgb'],
ratio_range=(1, 4)),
dict(
type='MinIoURandomCrop',
min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
min_crop_size=0.3),
dict(type='Resize', img_scale=(300, 300), keep_ratio=False),
dict(type='Normalize', **img_norm_cfg),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(300, 300),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=False),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=8, # using 32 GPUS while training.
workers_per_gpu=0, # workers_per_gpu > 0 may occur out of memory
train=dict(
_delete_=True,
type='RepeatDataset',
times=3,
dataset=dict(
type=dataset_type,
ann_file=data_root +
'annotations/oidv6-train-annotations-bbox.csv',
img_prefix=data_root + 'OpenImages/train/',
label_file=data_root +
'annotations/class-descriptions-boxable.csv',
hierarchy_file=data_root +
'annotations/bbox_labels_600_hierarchy.json',
pipeline=train_pipeline)),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.04, momentum=0.9, weight_decay=5e-4)
optimizer_config = dict()
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=20000,
warmup_ratio=0.001,
step=[8, 11])