-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_inference.py
793 lines (666 loc) · 32.4 KB
/
main_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
import json
from decimal import Decimal
import random
from torchsummary import summary
import cv2
import torch
import torch.nn.functional as F
import torch.nn.utils as utils
from torch.optim.lr_scheduler import StepLR
from tqdm import tqdm
import data
import utility
from model.carn_pams import CARN_PAMS
from model.carn_cadyq_inference import CARN_CADyQ_I
from model.edsr_pams import EDSR_PAMS
from model.edsr_pams import EDSR_PAMS
from model.edsr_cadyq_inference import EDSR_CADyQ_I
from model.idn_pams import IDN_PAMS
from model.idn_cadyq_inference import IDN_CADyQ_I
from model.srresnet_pams import SRResNet_PAMS
from model.srresnet_cadyq_inference import SRResNet_CADyQ_I
import torch.nn as nn
from option import args
from utils import common as util
from utils.common import AverageMeter
import torch.nn.parallel as P
import numpy as np
import kornia as K
import time
from torchvision.utils import save_image
torch.manual_seed(args.seed)
checkpoint = utility.checkpoint(args)
device = torch.device('cpu' if args.cpu else f'cuda:{args.gpu_id}')
class Trainer():
def __init__(self, args, loader, t_model, s_model, ckp, config_dict):
self.args = args
self.scale = args.scale
self.epoch = 0
self.ckp = ckp
self.loader_train = loader.loader_train
self.loader_test = loader.loader_test
self.t_model = t_model
self.s_model = s_model
self.config_dict = config_dict
if args.model == 'EDSR' or args.model == 'SRResNet':
arch_param = [v for k, v in self.s_model.named_parameters(
) if 'alpha' not in k and 'net' not in k]
alpha_param = [
v for k, v in self.s_model.named_parameters() if 'alpha' in k]
else:
alpha_param = [
v for k, v in self.s_model.named_parameters() if 'alpha' in k]
arch_param = [v for k, v in self.s_model.named_parameters(
) if 'alpha' not in k and 'net' not in k]
params = [{'params': arch_param}, {'params': alpha_param, 'lr': 1e-2}]
self.optimizer = torch.optim.Adam(
params, lr=args.lr, betas=args.betas, eps=args.epsilon)
self.scheduler = StepLR(
self.optimizer, step_size=int(args.decay), gamma=args.gamma)
self.resume_epoch = 0
if args.resume is not None:
ckpt = torch.load(args.resume)
self.epoch = ckpt['epoch']
print(f"Continue from {self.epoch}")
self.s_model.load_state_dict(ckpt['state_dict'])
self.optimizer.load_state_dict(ckpt['optimizer'])
self.scheduler.load_state_dict(ckpt['scheduler'])
self.resume_epoch = ckpt['epoch']
# self.epoch -= self.resume_epoch
# --------------- Print Model ---------------------
if args.test_only:
self.ckp.write_log('Test on {}'.format(args.student_weights))
# --------------- Print # Params ---------------------
n_params = 0
for p in list(s_model.parameters()):
n_p = 1
for s in list(p.size()):
n_p = n_p*s
n_params += n_p
self.ckp.write_log('Parameters: {:.1f}K'.format(n_params/(1e+3)))
self.losses = AverageMeter()
self.att_losses = AverageMeter()
self.nor_losses = AverageMeter()
self.bit_losses = AverageMeter()
self.avg_bit = AverageMeter()
self.test_patch_size = args.patch_size
self.step_size = args.step_size
self.mse_loss = nn.MSELoss()
self.losses_list = []
self.bit_list = []
self.valpsnr_list = []
self.valbit_list = []
def train(self):
self.scheduler.step()
# self.cadyq_scheduler.step()
self.epoch = self.epoch + 1
lr = self.optimizer.state_dict()['param_groups'][0]['lr']
self.w_bit = self.epoch*self.args.w_bit_decay + \
self.args.w_bit if self.args.cadyq else self.args.w_bit
self.ckp.write_log(
'[Epoch {}]\tLearning rate: {:.2e}'.format(
self.epoch, Decimal(lr))
)
self.t_model.eval()
self.s_model.train()
self.s_model.apply(lambda m: setattr(m, 'epoch', self.epoch))
num_iterations = len(self.loader_train)
timer_data, timer_model = utility.timer(), utility.timer()
losses = []
for batch, (lr, hr, idx_scale, ) in enumerate(self.loader_train):
num_iters = num_iterations * (self.epoch-1) + batch
lr, hr = self.prepare(lr, hr)
flags = []
for i in range(lr.size(0)):
lr_img = util.tensor2img(lr[i].detach().float().cpu())
imscore=(util.laplacian(lr_img).mean())
while str(round(imscore, args.select_float)) not in self.config_dict.keys() or self.config_dict[str(round(imscore, args.select_float))][0]["FAB"] >= args.calibration:
if args.select_float == 1:
imscore -= 0.1
elif args.select_float == 2:
imscore -= 0.01
elif args.select_float == 3:
imscore -= 0.001
imscore = -imscore if imscore < 0 else imscore
imscore = str(round(imscore, args.select_float))
# print(imscore)
cindex = random.randint(0,len(self.config_dict[imscore])-1)
cindex = cindex if args.select_bit == 2 else args.select_bit
bit_config = self.config_dict[imscore][cindex]["bit_config"]
flags.append(bit_config)
util.set_bit_flag(self.s_model, flags)
data_size = lr.size(0)
timer_data.hold()
timer_model.tic()
self.optimizer.zero_grad()
if hasattr(self.t_model, 'set_scale'):
self.t_model.set_scale(idx_scale)
if hasattr(self.s_model, 'set_scale'):
self.s_model.set_scale(idx_scale)
# Teacher
with torch.no_grad():
if self.args.model == 'CARN':
t_sr, t_res, t_feat = self.t_model(lr/255., self.scale[0])
t_sr *=255.
else:
# t_sr, t_res, _, t_feat, _ = self.t_model(lr)
t_sr, t_res, t_feat = self.t_model(lr)
# Student
if self.args.model == 'CARN':
s_sr, s_res, bits, s_feat = self.s_model(lr/255., self.scale[0])
s_sr *= 255.
else:
s_sr, s_res, bits, s_feat= self.s_model(lr)
# 1. Pixel-wise L1 loss
if self.args.model=='FSRCNN':
nor_loss = self.mse_loss(s_sr, hr)
else:
nor_loss = args.w_l1 * F.l1_loss(s_sr, hr)
loss = nor_loss
if self.args.model=='FSRCNN':
avg_bit = bits / 4.
elif self.args.model =='IDN':
avg_bit = bits / 6. / self.args.n_resblocks # / quant per module / module
elif self.args.model =='CARN':
avg_bit = bits / 2. / (3.*3.) # / quant per module / module
else:
if self.args.fully:
avg_bit = bits / (self.args.n_resblocks*2+4)
else:
avg_bit = bits /self.args.n_resblocks/2
# 3. Knowledge distillation loss
if self.args.loss_kd :
att_loss = self.args.w_at * util.at_loss(s_res, t_res)
if self.args.loss_kdf:
for block in range(self.args.n_resblocks):
att_loss += self.args.w_at*0.1 * util.at_loss(s_feat[block], t_feat[block])
loss += att_loss
loss.backward()
self.optimizer.step()
timer_model.hold()
self.losses.update(loss.item(), data_size)
self.nor_losses.update(nor_loss.item(), data_size)
# self.bit_losses.update(bit_grad_loss.item(), data_size)
self.att_losses.update(att_loss.item(), data_size)
self.avg_bit.update(avg_bit.mean().item(),data_size)
display_loss = f'Loss: {self.losses.avg: .3f}'
display_loss_nor = f'L_1: {self.nor_losses.avg: .3f}'
display_loss_bit = f'L_b: {self.bit_losses.avg: .3f}'
display_loss_att = f'L_k: {self.att_losses.avg: .3f}'
display_avg_bit = f'Avg bit: {self.avg_bit.avg: .2f}'
if (batch + 1) % self.args.print_every == 0:
self.ckp.write_log('[{}/{}] \t{:.1f}+{:.1f}s+ \t{} \t{} \t{} \t{}'.format(
(batch + 1) * self.args.batch_size,
len(self.loader_train.dataset),
timer_model.release(),
timer_data.release(),
display_loss_nor,
display_loss_bit,
display_loss_att,
display_avg_bit
))
self.losses_list.append(self.losses.avg)
# torch.save(torch.tensor(self.losses_list), self.ckp.dir+'/loss.pt')
self.bit_list.append(self.avg_bit.avg)
# torch.save(torch.tensor(self.bit_list), self.ckp.dir+'/bit.pt')
timer_data.tic()
def test(self, is_teacher=False):
torch.set_grad_enabled(False)
epoch = self.epoch
self.ckp.write_log('\nEvaluation:')
self.ckp.add_log(
torch.zeros(1, len(self.loader_test), len(self.scale))
)
if is_teacher:
model = self.t_model
else:
model = self.s_model
model.eval()
timer_test = utility.timer()
if self.args.save_results:
self.ckp.begin_background()
for idx_data, d in enumerate(self.loader_test):
for idx_scale, scale in enumerate(self.scale):
if self.args.test_patch:
# ------------------------Test patch-wise------------------------------
# Check options : --test_patch --patch_size 128 --step_size 16 --student_weights STUDENT_MODEL_DIRECTORY
d.dataset.set_scale(idx_scale)
i = 0
tot_bits = 0
for lr, hr, filename in tqdm(d, ncols=80):
i += 1
lr, hr = self.prepare(lr, hr)
print(lr.size())
print(lr[0].size())
lr_list, num_h, num_w, h, w = self.crop(
lr[0], self.test_patch_size, self.step_size)
hr_list = self.crop(
hr[0], self.test_patch_size*self.args.scale[0], self.step_size*self.args.scale[0])[0]
sr_list = []
p = 0
tot_bits_image = 0
imscores = []
FABs = []
psnrs = []
for lr_sub_img, hr_sub_img in zip(lr_list, hr_list):
# print(get_bit_config(model))
lr_img = util.tensor2img(
lr_sub_img.detach().float().cpu())
imscore = util.laplacian(lr_img).mean()
while str(round(imscore, args.select_float)) not in self.config_dict.keys() or self.config_dict[str(round(imscore, args.select_float))][0]["FAB"] >= args.calibration:
if imscore < 0:
break
if args.select_float == 1:
imscore -= 0.1
elif args.select_float == 2:
imscore -= 0.01
elif args.select_float == 3:
imscore -= 0.001
imscore = -imscore if imscore < 0 else imscore
imscores.append(imscore)
imscore = str(round(imscore, args.select_float))
cindex = random.randint(0,len(self.config_dict[imscore])-1)
cindex = cindex if args.select_bit == 2 else args.select_bit
bit_config = self.config_dict[imscore][cindex]["bit_config"]
flags = []
flags.append(bit_config)
util.set_bit_flag(model, flags)
time_start = time.time()
# --------------------select which quantization to pass through---------------------
if self.args.model == 'CARN':
sr_sub, _, bits, _ = model(
lr_sub_img.unsqueeze(0)/255., scale)
sr_sub *= 255.
else:
sr_sub, _, bits, _ = model(
lr_sub_img.unsqueeze(0))
time_end = time.time()
# print('\n')
# print(get_bit_config(model))
if self.args.model == 'FSRCNN':
avg_bit = bits.item() / 4
elif self.args.model == 'CARN':
avg_bit = bits.item() / 2. / (3.*3.) # / quant per module / module
elif self.args.model == 'IDN':
avg_bit = bits.item() / 6. / self.args.n_resblocks
else:
# EDSR, SRResNet
avg_bit = bits.item()/self.args.n_resblocks/2
tot_bits_image += avg_bit
FABs.append(avg_bit)
patch_psnr = utility.calc_psnr(
sr_sub, hr_sub_img, scale, self.args.rgb_range, dataset=d)
psnrs.append(patch_psnr)
self.ckp.write_log(
'{}-{:3d}: {:.2f} dB, {:.2f} avg bits'.format(filename[0], p, patch_psnr, avg_bit))
if self.args.save_patch:
save_image(sr_sub[0]/255, './experiment/'+self.args.save+'/results-'+self.args.data_test[0] +
'/{}_{}_{:.2f}_{:.2f}.png'.format(filename[0], p, patch_psnr, avg_bit))
sr_sub = utility.quantize(
sr_sub, self.args.rgb_range)
sr_list.append(sr_sub)
p += 1
sr = self.combine(
sr_list, num_h, num_w, h, w, self.test_patch_size, self.step_size)
sr = sr.unsqueeze(0)
save_list = [sr]
if self.args.add_mask:
sr_mask = util.add_mask_psnr(sr.cpu(), scale, num_h, num_w, h*scale, w*scale, self.test_patch_size, self.step_size, psnrs)
save_list.append(sr_mask)
cur_psnr = utility.calc_psnr(
sr, hr, scale, self.args.rgb_range, dataset=d)
cur_ssim = utility.calc_ssim(
sr, hr, scale, benchmark=d.dataset.benchmark)
self.ckp.log[-1, idx_data, idx_scale] += cur_psnr
self.ckp.bit_log[-1, idx_data,
idx_scale] += tot_bits_image/p
self.ckp.ssim_log[-1, idx_data, idx_scale] += cur_ssim
tot_bits += tot_bits_image/p
# per image
self.ckp.write_log(
'\n[{}] PSNR: {:.3f} dB; SSIM: {:.3f}; Avg_bit: {:.2f}; Num_patch: {}'.format(
filename[0],
cur_psnr,
cur_ssim,
tot_bits_image/p,
p
)
)
if self.args.save_gt:
save_list.extend([lr, hr])
if self.args.save_results:
save_name = '{}_{:.2f}'.format(
filename[0], cur_psnr)
self.ckp.save_results(
d, save_name, save_list, scale)
self.ckp.log[-1, idx_data, idx_scale] /= len(d)
self.ckp.ssim_log[-1, idx_data, idx_scale] /= len(d)
best_psnr = self.ckp.log.max(0)
self.ckp.write_log(
'[{} x{}] PSNR: {:.3f} SSIM:{:.3f} (Best PSNR: {:.3f} @epoch {}) {:.2f} bits'.format(
d.dataset.name,
scale,
self.ckp.log[-1, idx_data, idx_scale],
self.ckp.ssim_log[-1, idx_data, idx_scale],
best_psnr[0][idx_data, idx_scale],
best_psnr[1][idx_data, idx_scale] +
1 + self.resume_epoch,
tot_bits / len(d)
)
)
else:
# ------------------------Test image-wise------------------------------
d.dataset.set_scale(idx_scale)
i = 0
tot_bits = 0
pbar = tqdm(d, ncols=80)
for lr, hr, filename in pbar:
i += 1
lr, hr = self.prepare(lr, hr)
if self.args.precision == 'half':
model = model.half()
if self.args.chop:
sr, s_res = self.forward_chop(lr)
else:
if self.args.model.lower() == 'fsrcnn':
sr, s_res, bits, s_feat, s_w = model(lr)
avg_bit = bits.item()/4
elif self.args.model == 'IDN':
sr, s_res, bits, s_feat, s_w = model(lr)
avg_bit = bits.item() / self.args.n_resblocks/6
elif self.args.model == 'CARN':
sr, sr_res, bits, s_feat, s_w = model(
lr/255., scale) # for CARN
sr *= 255. # for CARN
avg_bit = bits.item() / 2. / (3.*3.) # / quant per module / module
else:
# EDSR, SRResNet
sr, s_res, s_feat = model(lr)
avg_bit = bits.item()/self.args.n_resblocks/2
tot_bits += avg_bit
pbar.set_postfix(
{'bit': '{:2.2f}'.format(avg_bit)})
sr = utility.quantize(sr, self.args.rgb_range)
save_list = [sr]
cur_psnr = utility.calc_psnr(
sr, hr, scale, self.args.rgb_range, dataset=d)
if self.args.test_only:
cur_ssim = utility.calc_ssim(
sr, hr, scale, benchmark=d.dataset.benchmark)
else:
cur_ssim = 0
self.ckp.log[-1, idx_data, idx_scale] += cur_psnr
self.ckp.bit_log[-1, idx_data, idx_scale] += avg_bit
self.ckp.ssim_log[-1, idx_data, idx_scale] += cur_ssim
if self.args.save_gt:
save_list.extend([lr, hr])
if self.args.save_results:
save_name = f'{filename[0]}_{args.k_bits}bit' + \
'_{:.2f}'.format(cur_psnr)
self.ckp.save_results(
d, save_name, save_list, scale)
self.ckp.log[-1, idx_data, idx_scale] /= len(d)
self.ckp.bit_log[-1, idx_data, idx_scale] /= len(d)
self.ckp.ssim_log[-1, idx_data, idx_scale] /= len(d)
best_psnr = self.ckp.log.max(0)
self.ckp.write_log(
'[{} x{}] PSNR: {:.3f}; SSIM: {:.3f}; (Best PSNR: {:.3f} @epoch {}) {:.2f} bits'.format(
d.dataset.name,
scale,
self.ckp.log[-1, idx_data, idx_scale],
self.ckp.ssim_log[-1, idx_data, idx_scale],
best_psnr[0][idx_data, idx_scale],
best_psnr[1][idx_data, idx_scale] +
1 + self.resume_epoch,
tot_bits / len(d)
)
)
if self.args.save_results:
self.ckp.end_background()
if not self.args.test_only:
is_best_psnr = (best_psnr[1][0, 0] + 1 == epoch)
state = {
'epoch': epoch,
'state_dict': self.s_model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'scheduler': self.scheduler.state_dict(),
}
util.save_checkpoint(state, is_best_psnr,
checkpoint=self.ckp.dir + '/model')
util.plot_psnr(self.args, self.ckp.dir, self.epoch -
self.resume_epoch, self.ckp.log)
util.plot_bit(self.args, self.ckp.dir, self.epoch -
self.resume_epoch, self.ckp.bit_log) # in utils/common.py
self.ckp.write_log(
'Total: {:.2f}s\n'.format(timer_test.toc()), refresh=True
)
torch.set_grad_enabled(True)
def prepare(self, *args):
# device = torch.device('cpu' if self.args.cpu else 'cuda')
def _prepare(tensor):
if self.args.precision == 'half':
tensor = tensor.half()
return tensor.to(device)
return [_prepare(a) for a in args]
def terminate(self):
if self.args.test_only:
self.test()
return True
else:
return self.epoch >= self.args.epochs
def forward_chop(self, *args, shave=10, min_size=160000):
# min_size : 400 x 400
scale = self.scale[0]
n_GPUs = min(self.args.n_GPUs, 4)
# height, width
h, w = args[0].size()[-2:]
top = slice(0, h//2 + shave)
bottom = slice(h - h//2 - shave, h)
left = slice(0, w//2 + shave)
right = slice(w - w//2 - shave, w)
x_chops = [torch.cat([
a[..., top, left],
a[..., top, right],
a[..., bottom, left],
a[..., bottom, right]
]) for a in args]
y_chops = []
if h * w < 4 * min_size:
for i in range(0, 4, n_GPUs):
x = [x_chop[i:(i + n_GPUs)] for x_chop in x_chops]
y, y_res = P.data_parallel(self.s_model, *x, range(n_GPUs))
if not isinstance(y, list):
y = [y]
if not y_chops:
y_chops = [[c for c in _y.chunk(
n_GPUs, dim=0)] for _y in y]
else:
for y_chop, _y in zip(y_chops, y):
y_chop.extend(_y.chunk(n_GPUs, dim=0))
else:
for p in zip(*x_chops):
y, y_res = self.forward_chop(
p[0].unsqueeze(0), shave=shave, min_size=min_size)
if not isinstance(y, list):
y = [y]
if not y_chops:
y_chops = [[_y] for _y in y]
else:
for y_chop, _y in zip(y_chops, y):
y_chop.append(_y)
h *= scale
w *= scale
top = slice(0, h//2)
bottom = slice(h - h//2, h)
bottom_r = slice(h//2 - h, None)
left = slice(0, w//2)
right = slice(w - w//2, w)
right_r = slice(w//2 - w, None)
b, c = y_chops[0][0].size()[:-2]
y = [y_chop[0].new(b, c, h, w) for y_chop in y_chops]
for y_chop, _y in zip(y_chops, y):
_y[..., top, left] = y_chop[0][..., top, left]
_y[..., top, right] = y_chop[1][..., top, right_r]
_y[..., bottom, left] = y_chop[2][..., bottom_r, left]
_y[..., bottom, right] = y_chop[3][..., bottom_r, right_r]
if len(y) == 1:
y = y[0]
return y, y_res
def crop(self, img, crop_sz, step):
n_channels = len(img.shape)
if n_channels == 2:
h, w = img.shape
elif n_channels == 3:
c, h, w = img.shape
else:
raise ValueError('Wrong image shape - {}'.format(n_channels))
h_space = np.arange(0, max(h - crop_sz, 0) + 1, step)
w_space = np.arange(0, max(w - crop_sz, 0) + 1, step)
index = 0
num_h = 0
lr_list = []
for x in h_space:
num_h += 1
num_w = 0
for y in w_space:
num_w += 1
index += 1
if n_channels == 2:
crop_img = img[x:x + crop_sz, y:y + crop_sz]
else:
if x == h_space[-1]:
if y == w_space[-1]:
crop_img = img[:, x:h, y:w]
else:
crop_img = img[:, x:h, y:y + crop_sz]
elif y == w_space[-1]:
crop_img = img[:, x:x + crop_sz, y:w]
else:
crop_img = img[:, x:x + crop_sz, y:y + crop_sz]
lr_list.append(crop_img)
return lr_list, num_h, num_w, h, w
def combine(self, sr_list, num_h, num_w, h, w, patch_size, step):
index = 0
sr_img = torch.zeros((3, h*self.scale[0], w*self.scale[0])).to(device)
s = int(((patch_size - step) / 2)*self.scale[0])
index1 = 0
index2 = 0
if num_h == 1:
if num_w == 1:
sr_img[:, :h*self.scale[0], :w *
self.scale[0]] += sr_list[index][0]
else:
for j in range(num_w):
y0 = j*step*self.scale[0]
if j == 0:
sr_img[:, :, y0:y0+s+step*self.scale[0]
] += sr_list[index1][0][:, :, :s+step*self.scale[0]]
elif j == num_w-1:
sr_img[:, :, y0+s:w*self.scale[0]
] += sr_list[index1][0][:, :, s:]
else:
sr_img[:, :, y0+s:y0+s+step*self.scale[0]
] += sr_list[index1][0][:, :, s:s+step*self.scale[0]]
index1 += 1
elif num_w == 1:
for i in range(num_h):
x0 = i*step*self.scale[0]
if i == 0:
sr_img[:, x0:x0+s+step*self.scale[0],
:] += sr_list[index2][0][:, :s+step*self.scale[0], :]
elif i == num_h-1:
sr_img[:, x0+s:h*self.scale[0],
:] += sr_list[index2][0][:, s:, :]
else:
sr_img[:, x0+s:x0+s+step*self.scale[0],
:] += sr_list[index2][0][:, s:s+step*self.scale[0], :]
index2 += 1
else:
for i in range(num_h):
for j in range(num_w):
x0 = i*step*self.scale[0]
y0 = j*step*self.scale[0]
if i == 0:
if j == 0:
sr_img[:, x0:x0+s+step*self.scale[0], y0:y0+s+step*self.scale[0]
] += sr_list[index][0][:, :s+step*self.scale[0], :s+step*self.scale[0]]
elif j == num_w-1:
sr_img[:, x0:x0+s+step*self.scale[0], y0+s:w*self.scale[0]
] += sr_list[index][0][:, :s+step*self.scale[0], s:]
else:
sr_img[:, x0:x0+s+step*self.scale[0], y0+s:y0+s+step*self.scale[0]
] += sr_list[index][0][:, :s+step*self.scale[0], s:s+step*self.scale[0]]
elif j == 0:
if i == num_h-1:
sr_img[:, x0+s:h*self.scale[0], y0:y0+s+step*self.scale[0]
] += sr_list[index][0][:, s:, :s+step*self.scale[0]]
else:
sr_img[:, x0+s:x0+s+step*self.scale[0], y0:y0+s+step*self.scale[0]
] += sr_list[index][0][:, s:s+step*self.scale[0], :s+step*self.scale[0]]
elif i == num_h-1:
if j == num_w-1:
sr_img[:, x0+s:h*self.scale[0], y0+s:w *
self.scale[0]] += sr_list[index][0][:, s:, s:]
else:
sr_img[:, x0+s:h*self.scale[0], y0+s:y0+s+step*self.scale[0]
] += sr_list[index][0][:, s:, s:s+step*self.scale[0]]
elif j == num_w-1:
sr_img[:, x0+s:x0+s+step*self.scale[0], y0+s:w*self.scale[0]
] += sr_list[index][0][:, s:s+step*self.scale[0], s:]
else:
sr_img[:, x0+s:x0+s+step*self.scale[0], y0+s:y0+s+step*self.scale[0]
] += sr_list[index][0][:, s:s+step*self.scale[0], s:s+step*self.scale[0]]
index += 1
return sr_img
def main():
if checkpoint.ok:
loader = data.Data(args)
if args.model == 'CARN':
# teacher model (8-bit)
t_model = CARN_PAMS(args, bias=True, k_bits=args.k_bits,
multi_scale=True, linq=False, fully=False).to(device)
# student model
s_model = CARN_CADyQ_I(
args, bias=True, multi_scale=args.multi_scale).to(device)
elif args.model == 'EDSR':
t_model = EDSR_PAMS(args, bias=True, k_bits=args.k_bits).to(device)
s_model = EDSR_CADyQ_I(args, bias=True, k_bits=args.k_bits).to(device)
elif args.model == 'IDN':
t_model = IDN_PAMS(args, bias=True, k_bits=args.k_bits).to(device)
s_model = IDN_CADyQ_I(args, bias=True).to(device)
elif args.model == 'SRResNet':
t_model = SRResNet_PAMS(
args, bias=True, k_bits=args.k_bits).to(device)
s_model = SRResNet_CADyQ_I(
args, bias=True, k_bits=args.k_bits).to(device)
else:
raise ValueError('not expected model = {}'.format(args.model))
# Teacher initialization
if args.teacher_weights is not None:
t_ckpt = torch.load(args.teacher_weights)
t_checkpoint = t_ckpt['state_dict'] if 'state_dict' in t_ckpt else t_ckpt
t_model.load_state_dict(t_checkpoint)
# s_model.load_state_dict(t_checkpoint)
# Student initialization
if args.student_weights is None:
if args.test_only:
print("no model loaded")
else:
ckpt = torch.load(f'{args.student_weights}')
s_checkpoint = ckpt['state_dict'] if 'state_dict' in ckpt else ckpt
s_model.load_state_dict(s_checkpoint)
print('\n------------------------' +
f"Load model from {args.student_weights}-----------------\n")
config_dict = {}
with open(f"{args.model}-{args.scale}-['div2k_valid'].json", "r") as f:
config_dict = json.load(f)
f.close()
t = Trainer(args, loader, t_model, s_model, checkpoint, config_dict)
print(f'{args.save} start!')
while not t.terminate():
t.train()
t.test()
checkpoint.done()
print(f'{args.save} done!')
if __name__ == '__main__':
main()