-
Notifications
You must be signed in to change notification settings - Fork 0
/
symbolic_script.cpp
1645 lines (1333 loc) · 62.3 KB
/
symbolic_script.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <torch/csrc/jit/runtime/symbolic_script.h>
#include <torch/csrc/jit/frontend/ir_emitter.h>
#include <torch/csrc/jit/runtime/operator.h>
namespace torch::jit {
namespace {
std::mutex lock;
const std::vector<std::string> functions = {
R"(
#### HELPER FUNCTIONS ###
#### PREFIX: AD_ ###
#### SCHEMA NOT SAVED IN CACHE ###
def AD_unsqueeze_multiple(t,
dims: List[int],
n_dims: int):
seen = [False] * n_dims
for i in range(len(dims)):
seen[dims[i]] = True
for d in range(n_dims):
if seen[d]:
t = t.unsqueeze(d)
return t
def AD_sum_backward(grad,
sizes: List[int],
dims: Optional[List[int]],
keepdim: bool):
if not keepdim and len(sizes) > 0:
if dims is None:
return grad.expand(sizes)
elif len(dims) == 1:
return grad.unsqueeze(dims[0]).expand(sizes)
else:
res = AD_unsqueeze_multiple(grad, dims, len(sizes))
return res.expand(sizes)
else:
return grad.expand(sizes)
def AD_logsumexp_backward(grad, self, result,
dim: List[int],
keepdim: bool):
if not keepdim and self.dim() != 0:
n_dims = len(self.size())
grad = AD_unsqueeze_multiple(grad, dim, n_dims)
result = AD_unsqueeze_multiple(result, dim, n_dims)
return grad * (self - result).exp()
def mean_0(self, *, dtype: Optional[int]):
self_size = self.size()
self_numel = self.numel()
self_scalar_type = self.dtype
def backward(grad_output):
return grad_output.expand(self_size).to(self_scalar_type) / self_numel, None
return torch.mean(self, dtype=dtype), backward
def mean_1(self,
dim: Optional[List[int]],
keepdim: bool,
*,
dtype: Optional[int]):
self_size = self.size()
self_scalar_type = self.dtype
def backward(grad_output):
grad_self = AD_sum_backward(grad_output, self_size, dim, keepdim).to(self_scalar_type) / AD_safe_size(self_size, dim)
return grad_self, None, None, None
return torch.mean(self, dim, keepdim, dtype=dtype), backward
def logsumexp(self,
dim: List[int],
keepdim: bool):
result = torch.logsumexp(self, dim, keepdim)
self_dim = self.dim()
def backward(grad_output):
grad_self = AD_logsumexp_backward(grad_output, self, result, dim, keepdim)
return grad_self, None, None
return result, backward
def AD_bool_to_int(b: bool):
# FIXME: torchscript: int - bool
if b:
i = 1
else:
i = 0
return i
def AD_var_backward_0(grad, self, correction: number):
# FIXME: torchscript: div(float, float)
return grad * (self - self.mean()) * 2.0 / (self.numel() - correction)
def AD_safe_size(sizes: List[int],
dims: Optional[List[int]]):
if len(sizes) == 0:
return 1
size = 1
if dims is None:
for s in sizes:
size *= s
else:
for i in range(len(dims)):
d = dims[i]
size *= sizes[d]
return size
def AD_var_backward_1(grad,
self,
dim: List[int],
correction: number,
keepdim: bool):
if self.dim() == 0:
return AD_var_backward_0(grad, self, correction)
self_size = self.size()
if not keepdim and self.dim() > 1:
grad = AD_unsqueeze_multiple(grad, dim, len(self_size))
# FIXME: torchscript: div(float, float)
return grad * (self - self.mean(dim, True)) * 2.0 / (AD_safe_size(self_size, dim) - correction)
def AD_var_backward_2(grad,
self,
dim: Optional[List[int]],
correction: Optional[number],
keepdim: bool):
if correction is None:
correction = 1
if self.dim() == 0 or dim is None:
return AD_var_backward_0(grad, self, correction)
return AD_var_backward_1(grad, self, dim, correction, keepdim)
def std_0(self,
unbiased: bool=True):
std_out = torch.std(self, unbiased)
def backward(grad_output):
correction = AD_bool_to_int(unbiased)
grad_self = AD_var_backward_0(grad_output / (std_out * 2), self, correction)
return grad_self, None
return std_out, backward
def std_1(self,
dim: Optional[List[int]],
unbiased: bool,
keepdim: bool):
std_out = torch.std(self, dim, unbiased, keepdim)
def backward(grad_output):
correction = AD_bool_to_int(unbiased)
grad_self = AD_var_backward_2(grad_output / (std_out * 2), self, dim, correction, keepdim)
return grad_self, None, None, None
return std_out, backward
def std_2(self,
dim: Optional[List[int]],
*,
correction: Optional[number],
keepdim: bool):
std_out = torch.std(self, dim, correction=correction, keepdim=keepdim)
def backward(grad_output):
grad_self = AD_var_backward_2(grad_output / (std_out * 2), self, dim, correction, keepdim)
return grad_self, None, None, None
return std_out, backward
def var_0(self,
unbiased: bool=True):
def backward(grad_output):
correction = AD_bool_to_int(unbiased)
grad_self = AD_var_backward_0(grad_output, self, correction)
return grad_self, None
return torch.var(self, unbiased), backward
def var_1(self,
dim: Optional[List[int]],
unbiased: bool,
keepdim: bool):
def backward(grad_output):
correction = AD_bool_to_int(unbiased)
grad_self = AD_var_backward_2(grad_output, self, dim, correction, keepdim)
return grad_self, None, None, None
return torch.var(self, dim, unbiased, keepdim), backward
def var_2(self,
dim: Optional[List[int]],
*,
correction: Optional[number],
keepdim: bool):
def backward(grad_output):
grad_self = AD_var_backward_2(grad_output, self, dim, correction, keepdim)
return grad_self, None, None, None
return torch.var(self, dim, correction=correction, keepdim=keepdim), backward
def tanh(self):
output = torch.tanh(self)
def backward(grad_output):
return grad_output * (1 - output * output)
return output, backward
def AD_index_select_backward(grad,
dim: int,
indices,
sizes: List[int],
keepdim: bool):
if not keepdim and len(sizes) > 0:
grad = grad.unsqueeze(dim)
indices = indices.unsqueeze(dim)
# FIXME: torchscript: torch.zeros(sizes, grad.options())
return torch.zeros(sizes).to(grad).scatter_(dim, indices, grad)
# def topk(self,
# k: int,
# dim: int = -1,
# largest: bool = True,
# sorted: bool = True):
# result0, result1 = torch.topk(self, k, dim, largest, sorted)
# self_size = self.size()
# def backward(grad_output):
# grad_self = AD_index_select_backward(grad_output, dim, result1, self_size, True)
# return grad_self, None, None, None, None
# return result0, result1, backward
# def kthvalue(self,
# k: int,
# dim: int,
# keepdim: bool):
# result0, result1 = torch.kthvalue(self, k, dim, keepdim)
# self_size = self.size()
# def backward(grad_output):
# grad_self = AD_index_select_backward(grad_output, dim, result1, self_size, keepdim)
# return grad_self, None, None, None
# return result0, result1, backward
def AD_mm_backward_self(grad, mat2):
return grad.mm(mat2.t())
def AD_mm_backward_mat2(grad, self):
return self.t().mm(grad)
def mm(self, mat2):
def backward(grad_output):
grad_self = AD_mm_backward_self(grad_output, mat2)
grad_mat2 = AD_mm_backward_mat2(grad_output, self)
return grad_self, grad_mat2
return torch.mm(self, mat2), backward
def AD_permute_backward(grad,
fwd_dims: List[int]):
ndims = len(fwd_dims)
dims = [0] * ndims
for i in range(ndims):
dims[fwd_dims[i]] = i
return grad.permute(dims)
def permute(self,
dims: List[int]):
def backward(grad_output):
grad_self = AD_permute_backward(grad_output, dims)
return grad_self, None
return torch.permute(self, dims), backward
def AD_select_backward(grad,
input_sizes: List[int],
dim: int,
index: int):
# FIXME: torchscript: torch.zeros(sizes, grad.options())
grad_input = torch.zeros(input_sizes).to(grad)
grad_input.select(dim, index).copy_(grad)
return grad_input
# TODO: fix torch.zeros(sizes, grad.options()) before enabling select, topk, kthvalue
# def select(self,
# dim: int,
# index: int):
# self_size = self.size()
# def backward(grad_output):
# grad_self = AD_select_backward(grad_output, self_size, dim, index)
# return grad_self, None, None
# return torch.select(self, dim, index), backward
def AD_slice_backward(grad,
input_sizes: List[int],
dim: int,
start: int,
end: int,
step: int):
# FIXME: torchscript: torch.zeros(sizes, grad.options())
grad_input = torch.zeros(input_sizes).to(grad)
grad_input.slice(dim, start, end, step).copy_(grad)
return grad_input
# DON'T enable slice unless we can correctly handle view ops in graph executor.
# It triggers failure of TestJit.test_sample in test_distributions.py.
# def slice(self,
# dim: int=0,
# start: int=0,
# end: int=9223372036854775807,
# step: int=1):
# def backward(grad_output):
# grad_self = AD_slice_backward(grad_output, self.size(), dim, start, end, step)
# return grad_self, None, None, None, None
# return torch.slice(self, dim, start, end, step), backward
def AD_unsqueeze_to_0(self,
sizes: List[int]):
ndims = len(sizes)
for i in range(ndims):
if sizes[i] == 1:
self = self.unsqueeze(i)
return self
def AD_unsqueeze_to_1(self,
dim: int,
sizes: List[int]):
if len(sizes) > 0 and sizes[dim] == 1:
return self.unsqueeze(dim)
return self
def squeeze_0(self):
self_size = self.size()
def backward(grad_output):
grad_self = AD_unsqueeze_to_0(grad_output, self_size)
return grad_self
return torch.squeeze(self), backward
def squeeze_1(self,
dim: int):
self_size = self.size()
def backward(grad_output):
grad_self = AD_unsqueeze_to_1(grad_output, dim, self_size)
return grad_self, None
return torch.squeeze(self, dim), backward
def AD_infer_size(a: List[int],
b: List[int]):
dimsA = len(a)
dimsB = len(b)
ndim = dimsA if dimsA > dimsB else dimsB
expand_sizes = [0] * ndim
for i in range(ndim):
idx = - i + ndim - 1
sizeA = a[i] if dimsA + i >= 0 else 1
sizeB = b[i] if dimsB + i >= 0 else 1
# Assert sizeA == sizeB or sizeA == 1 or sizeB == 1
expand_sizes[i] = sizeB if sizeA == 1 else sizeA
return expand_sizes
def AD_bmm_backward_self(grad, mat2):
return grad.bmm(mat2.transpose(1, 2))
def AD_bmm_backward_mat2(grad, self):
return self.transpose(1, 2).bmm(grad)
def bmm(self, mat2):
def backward(grad_output):
grad_self = AD_bmm_backward_self(grad_output, mat2)
grad_mat2 = AD_bmm_backward_mat2(grad_output, self)
return grad_self, grad_mat2
return torch.bmm(self, mat2), backward
)",
R"(
def AD_mat_transpose(mat):
dim = mat.dim()
if dim == 1:
out = mat
elif dim == 2:
out = mat.t()
else:
dims = rangelist(dim)
dims[-1] = dim - 2
dims[-2] = dim - 1
out = mat.permute(dims)
return out
# In matmul backward case of [b, m, n] * [b, n, p] => [m, p],
# instead of doing [b, m, p] and then reduce to [m, p]
# which potentially uses large intermediate of size b*m*p,
# we do [m, bn] * [bn, p] to avoid having the large
# intermediate, thus reduces max memory usage.
def AD_matmul_bw_special_fold(mat1, mat2):
mat1_transpose = AD_mat_transpose(mat1)
mat1_fold = mat1_transpose.reshape(-1, mat1_transpose.size()[-1])
mat2_fold = mat2.reshape(-1, mat2.size()[-1])
return mat1_fold.t().mm(mat2_fold)
def AD_matmul_bw_size(mat1, mat2,
out_size: List[int]):
dim1 = mat1.dim()
dim2 = mat2.dim()
dim_out = len(out_size)
if dim1 == 0 or dim2 == 0:
out = mat1 * mat2
elif dim_out == 2 and dim1 == dim2 and dim1 >=3:
out = AD_matmul_bw_special_fold(mat1, mat2)
elif dim_out == 1 and dim1 - dim2 == 1 and dim1 >= 3:
mat2_unsqueeze = mat2.unsqueeze(-1)
out = AD_matmul_bw_special_fold(mat1, mat2_unsqueeze)
out = out.squeeze(-1)
elif dim1 + dim2 == dim_out:
if dim2 == 1:
target_dim2 = 0
else:
target_dim2 = -2
out = torch.matmul(mat1.unsqueeze(dim1), mat2.unsqueeze(target_dim2))
elif dim_out == dim1 - dim2:
out = torch.matmul(mat1, mat2.unsqueeze(dim2)).squeeze(-1)
elif dim_out == dim2 - dim1:
out = torch.matmul(mat1.unsqueeze(-2), mat2).squeeze(-2)
else:
out = torch.matmul(mat1, mat2)
return out
def matmul(self, other):
def backward(grad_output):
self_size = self.size()
other_size = other.size()
grad_self = AD_matmul_bw_size(grad_output, AD_mat_transpose(other), self_size)._grad_sum_to_size(self_size)
grad_other = AD_matmul_bw_size(AD_mat_transpose(self), grad_output, other_size)._grad_sum_to_size(other_size)
return grad_self, grad_other
return torch.matmul(self, other), backward
def linear(input : Tensor,
weight : Tensor,
bias : Optional[Tensor]):
result = torch.linear(input, weight, bias)
def backward(grad_output):
if bias is not None:
grad_bias = grad_output._grad_sum_to_size(bias.size())
else:
grad_bias = None
weight_size = weight.size()
grad_input = torch.matmul(grad_output, weight)
grad_weight = torch.matmul(grad_output.reshape(-1, weight_size[0]).t(), input.reshape(-1, weight_size[1]))
# Note: calling unchecked_unwrap_optional is only safe, when we
# directly return grad_bias directly back to bias.
# Because in the case where `bias is None`, unwrapped
# grad_bias would just be pruned away.
return grad_input, grad_weight, grad_bias.unchecked_unwrap_optional
return result, backward
)",
R"(
def addcmul(self,
tensor1,
tensor2,
*,
value: number):
result = torch.addcmul(self, tensor1, tensor2, value=value)
self_size = torch._size_if_not_equal(self.size(), result.size())
tensor1_size = torch._size_if_not_equal(tensor1.size(), result.size())
tensor2_size = torch._size_if_not_equal(tensor2.size(), result.size())
def backward(grad_output):
grad = grad_output * value
grad_tensor1 = (grad * tensor2)._grad_sum_to_size(tensor1_size)
grad_tensor2 = (grad * tensor1)._grad_sum_to_size(tensor2_size)
return grad_output._grad_sum_to_size(self_size), grad_tensor1, grad_tensor2, None
return result, backward
def _autocast_to_full_precision(self, cuda_enabled : bool, cpu_enabled : bool):
self_dtype = self.dtype
def backward(grad_output):
return grad_output.to(self_dtype), None, None
return torch._autocast_to_full_precision(self, cuda_enabled, cpu_enabled), backward
def _autocast_to_reduced_precision(self,
cuda_enabled : bool,
cpu_enabled : bool,
cuda_dtype : int,
cpu_dtype : int):
self_dtype = self.dtype
def backward(grad_output):
return grad_output.to(self_dtype), None, None, None, None
return torch._autocast_to_reduced_precision(self, cuda_enabled, cpu_enabled, cuda_dtype, cpu_dtype), backward
def _dim_arange(like,
dim: int):
def backward(grad_output):
return None, None
return torch._dim_arange(like, dim), backward
def contiguous(self, *, memory_format: int=0):
def backward(grad_output):
return grad_output, None
return self.contiguous(memory_format=memory_format), backward
def dot(self, tensor):
def backward(grad_output):
return grad_output * tensor, grad_output * self
return torch.dot(self, tensor), backward
def erf(self):
def backward(grad_output):
# Precomputed constant C = 2.0 / math.sqrt(math.pi)
C = 1.1283791670955126
return C * torch.exp(- self * self) * grad_output
return torch.erf(self), backward
def expand(self,
size: List[int],
*,
implicit: bool=False):
result = torch.expand(self, size, implicit=implicit)
self_size = torch._size_if_not_equal(self.size(), result.size())
def backward(grad_output):
return grad_output._grad_sum_to_size(self_size), None, None
return result, backward
def expand_as(self, other):
result = torch.expand_as(self, other)
self_size = torch._size_if_not_equal(self.size(), result.size())
def backward(grad_output):
return grad_output._grad_sum_to_size(self_size), None
return result, backward
def full_like(self,
fill_value: float):
def backward(grad_output):
return None, None
return torch.full_like(self, fill_value, memory_format=1), backward
def lerp_0(self,
end,
weight: number):
result = torch.lerp(self, end, weight)
self_size = torch._size_if_not_equal(self.size(), result.size())
end_size = torch._size_if_not_equal(end.size(), result.size())
def backward(grad_output):
grad_self = (grad_output * (1 - float(weight)))._grad_sum_to_size(self_size)
grad_end = (grad_output * float(weight))._grad_sum_to_size(end_size)
return grad_self, grad_end, None
return result, backward
def lerp_1(self,
end,
weight):
result = torch.lerp(self, end, weight)
self_size = torch._size_if_not_equal(self.size(), result.size())
end_size = torch._size_if_not_equal(end.size(), result.size())
weight_size = torch._size_if_not_equal(weight.size(), result.size())
def backward(grad_output):
grad_self = (grad_output * (1 - weight))._grad_sum_to_size(self_size)
grad_end = (grad_output * weight)._grad_sum_to_size(end_size)
grad_weight = (grad_output * (end - self))._grad_sum_to_size(weight_size)
return grad_self, grad_end, grad_weight
return result, backward
def reshape(self,
shape: List[int]):
self_size = self.size()
def backward(grad_output):
return grad_output.reshape(self_size), None
return torch.reshape(self, shape), backward
def split(self,
split_size: int,
dim: int):
def backward(grad_outputs: List[Tensor]):
grad_self = torch.cat(grad_outputs, dim)
return grad_self, None, None
return torch.split(self, split_size, dim), backward
def split_with_sizes(self,
split_sizes: List[int],
dim: int):
def backward(grad_outputs: List[Tensor]):
size = len(grad_outputs)
grad_self = torch.cat(grad_outputs, dim)
return grad_self, None, None
return torch.split_with_sizes(self, split_sizes, dim), backward
def stack(tensors: List[Tensor],
dim: int=0):
def backward(grad_output):
grad_tensors = torch.unbind(grad_output, dim)
return grad_tensors, None
return torch.stack(tensors, dim), backward
def unbind(self,
dim: int):
def backward(grad_outputs: List[Tensor]):
grad_self = torch.stack(grad_outputs, dim)
return grad_self, None
return torch.unbind(self, dim), backward
def cat(tensors: List[Tensor],
dim: int):
size = len(tensors)
split_sizes = [0] * size
for i in range(size):
if tensors[i].size() != [0]:
split_sizes[i] = tensors[i].size()[dim]
def backward(grad_output):
grad_tensors = torch.split_with_sizes(grad_output, split_sizes, dim)
return grad_tensors, None
return torch.cat(tensors, dim), backward
def index(self,
indices: List[Tensor]):
def backward(grad_output):
grad_self = torch.zeros_like(self, memory_format=1).index_put_(indices, grad_output, True)
return grad_self, None
return torch.index(self, indices), backward
def meshgrid(tensors: List[Tensor]):
size = len(tensors)
sizes = [0] * size
for i in range(size):
if tensors[i].dim() != 0:
sizes[i] = tensors[i].size()[0]
def backward(grad_outputs: List[Tensor]):
grads_tensors = []
for i in range(size):
view_shape = [1] * size
if sizes[i] == 0:
view_shape[i] = 1
grads_tensors.append((grad_outputs[i]._grad_sum_to_size(view_shape)).reshape(()))
else:
view_shape[i] = sizes[i]
grads_tensors.append((grad_outputs[i]._grad_sum_to_size(view_shape)).reshape([sizes[i]]))
return grads_tensors
return torch.meshgrid(tensors), backward
def mv(self, vec):
def backward(grad_output):
return grad_output.ger(vec), self.t().mv(grad_output)
return torch.mv(self, vec), backward
def nonzero(self):
def backward(grad_output):
return None
return torch.nonzero(self), backward
def ones_like(self):
def backward(grad_output):
return None
return torch.ones_like(self, memory_format=1), backward
def pow_0(self,
exponent: number):
def backward(grad_output):
if float(exponent) == 0.0:
grad_self = torch.zeros_like(self, memory_format=1)
else:
grad_self = grad_output * exponent * torch.pow(self, float(exponent) - 1)
return grad_self, None
return torch.pow(self, exponent), backward
def pow_1(self, exponent):
result = torch.pow(self, exponent)
self_size = torch._size_if_not_equal(self.size(), result.size())
exponent_size = torch._size_if_not_equal(exponent.size(), result.size())
def backward(grad_output):
grad_self = torch.where(exponent == 0.0, torch.zeros_like(self, memory_format=1), grad_output * exponent * torch.pow(self, exponent - 1))._grad_sum_to_size(self_size)
grad_exponent = (grad_output * torch.pow(self, exponent) * torch.log(self))._grad_sum_to_size(exponent_size)
return grad_self, grad_exponent
return result, backward
def pow_2(self: number,
exponent):
def backward(grad_output):
grad_exponent = grad_output * torch.pow(self, exponent) * torch.log(float(self))
return None, grad_exponent
return torch.pow(self, exponent), backward
def rsub_0(self,
other,
alpha: number):
result = torch.rsub(self, other, alpha=alpha)
self_size = torch._size_if_not_equal(self.size(), result.size())
other_size = torch._size_if_not_equal(other.size(), result.size())
def backward(grad_output):
grad_self = (- grad_output * alpha)._grad_sum_to_size(self_size)
grad_other = (grad_output)._grad_sum_to_size(other_size)
return grad_self, grad_other, None
return result, backward
def rsub_1(self,
other: number,
alpha: number):
def backward(grad_output):
grad_self = (- grad_output * alpha)
return grad_self, None, None
return torch.rsub(self, other, alpha), backward
def sqrt(self):
result = torch.sqrt(self)
def backward(grad_output):
return grad_output / (2 * result)
return result, backward
def t(self):
def backward(grad_output):
return torch.t(grad_output)
return torch.t(self), backward
def to_0(self,
device: Optional[Device],
dtype: Optional[int],
non_blocking: bool,
copy: bool):
self_device = self.device
self_dtype = self.dtype
if device is not None:
result = self.to(device, dtype=dtype, non_blocking=non_blocking, copy=copy)
else:
result = self.to(dtype, non_blocking=non_blocking, copy=copy)
def backward(grad_output):
grad_self = grad_output.to(self_device, dtype=self_dtype, non_blocking=non_blocking, copy=copy)
return grad_self, None, None, None, None
return result, backward
def to_1(self,
dtype: int,
non_blocking: bool,
copy: bool):
self_dtype = self.dtype
def backward(grad_output):
grad_self = grad_output.to(self_dtype, non_blocking, copy)
return grad_self, None, None, None
return self.to(dtype=dtype, non_blocking=non_blocking, copy=copy), backward
def to_2(self,
other,
non_blocking: bool,
copy: bool):
def backward(grad_output):
grad_self = grad_output.to(self, non_blocking, copy)
return grad_self, None, None, None
return self.to(other, non_blocking=non_blocking, copy=copy), backward
def transpose(self,
dim0: int,
dim1: int):
def backward(grad_output):
return torch.transpose(grad_output, dim0, dim1), None, None
return torch.transpose(self, dim0, dim1), backward
def view(self,
size: List[int]):
self_size = self.size()
def backward(grad_output):
return grad_output.reshape(self_size), None
return torch.view(self, size), backward
)",
R"(
def AD_sizes_if_not_equal_multi_0(t1, t2, res):
return torch._size_if_not_equal(t1.size(), res.size()), torch._size_if_not_equal(t2.size(), res.size())
def mul_0(self, other):
result = self * other
self_size, other_size = AD_sizes_if_not_equal_multi_0(self, other, result)
def backward(grad_output):
grad_self = (grad_output * other)._grad_sum_to_size(self_size)
grad_other = (grad_output * self)._grad_sum_to_size(other_size)
return grad_self, grad_other
return result, backward
def mul_1(self, other: number):
def backward(grad_output):
return grad_output * other, None
return self * other, backward
def div_0(self, other):
result = self / other
self_size, other_size = AD_sizes_if_not_equal_multi_0(self, other, result)
def backward(grad_output):
grad_self = (grad_output / other)._grad_sum_to_size(self_size)
grad_other = (-grad_output * self / (other * other))._grad_sum_to_size(other_size)
return grad_self, grad_other
return result, backward
def div_1(self, other: number):
def backward(grad_output):
return grad_output / other, None
return self / other, backward
def div_2(self, other, *, rounding_mode: Optional[str]):
result = torch.div(self, other, rounding_mode=rounding_mode)
self_size, other_size = AD_sizes_if_not_equal_multi_0(self, other, result)
def backward(grad_output):
if rounding_mode is None:
grad_self = (grad_output / other)._grad_sum_to_size(self_size)
grad_other = (-grad_output * self / (other * other))._grad_sum_to_size(other_size)
else:
grad_self = torch.zeros_like(self)
grad_other = torch.zeros_like(other)
return grad_self, grad_other, None
return result, backward
def div_3(self, other: number, *, rounding_mode: Optional[str]):
result = torch.div(self, other, rounding_mode=rounding_mode)
def backward(grad_output):
if rounding_mode is None:
grad_self = (grad_output / other)
else:
grad_self = torch.zeros_like(self, memory_format=1)
return grad_self, None, None
return result, backward
def max(self, other):
result = torch.max(self, other)
self_size, other_size = AD_sizes_if_not_equal_multi_0(self, other, result)
def backward(grad_output):
grad_self = (grad_output * (self > other).type_as(grad_output))._grad_sum_to_size(self_size)
grad_other = (grad_output * (other > self).type_as(grad_output))._grad_sum_to_size(other_size)
return grad_self, grad_other
return result, backward
def min(self, other):
def backward(grad_output):
grad_self = (grad_output * (self < other).type_as(grad_output))._grad_sum_to_size(self.size())
grad_other = (grad_output * (other < self).type_as(grad_output))._grad_sum_to_size(other.size())
return grad_self, grad_other
return torch.min(self, other), backward
def sigmoid(self):
result = torch.sigmoid(self)
def backward(grad_output):
return (1 - result) * result * grad_output
return result, backward
# Share backward with threshold
def relu(self):
result = torch.relu(self)
def backward(grad_output):
return grad_output * (result > 0).type_as(result)
return result, backward
def relu6(self):
result = torch.relu6(self)
def backward(grad_output):
return grad_output * ((result > 0) & (result < 6.0))
return result, backward
def leaky_relu(self, negative_slope: number):
result = torch.leaky_relu(self, negative_slope)
def backward(grad_output):
return grad_output * torch.where(self > 0, 1.0, negative_slope).type_as(result), None
return result, backward
def gelu(self : Tensor, *, approximate : str):
result = torch.gelu(self, approximate=approximate)
def backward(grad_output):
return torch.gelu_backward(grad_output, self, approximate=approximate), None
return result, backward
def silu(self):
result = torch.silu(self)
def backward(grad_output):
input_sigmoid = torch.sigmoid(self)
return grad_output * (input_sigmoid * (1 + self * (1 - input_sigmoid)))
return result, backward
def hardswish(self):
result = torch.hardswish(self)
def backward(grad_output):
m = (self > 3.).type_as(result)
m = torch.where((self >= -3.) & (self <= 3.), self / 3. + .5, m)
return grad_output * m
return result, backward
def hardsigmoid(self):
result = torch.hardsigmoid(self)
def backward(grad_output):
m = (self > -3.) & (self < 3.)
lhs = grad_output * (1.0 / 6.0)
return torch.where(m, lhs, m.type_as(self))
return result, backward
def erfc(self):
def backward(grad_output):
# Precomputed constant C = -2.0 / math.sqrt(math.pi)
C = -1.1283791670955126
return C * torch.exp(-self * self) * grad_output
return torch.erfc(self), backward
def exp(self):
result = torch.exp(self)
def backward(grad_output):
return grad_output * result
return result, backward
def neg(self):
def backward(grad_output):
return grad_output.neg()
return torch.neg(self), backward
def where(condition, self, other):
result = torch.where(condition, self, other)
self_size, other_size = AD_sizes_if_not_equal_multi_0(self, other, result)
def backward(grad_output):
grad_self = (grad_output * condition.type_as(grad_output))._grad_sum_to_size(self_size)
grad_other = (grad_output * (condition.bitwise_not()).type_as(grad_output))._grad_sum_to_size(other_size)
return None, grad_self, grad_other
return result, backward
def type_as(self, other):
def backward(grad_output):
return grad_output.type_as(self), None
return torch.type_as(self, other), backward
def unsqueeze(self, dim: int):
def backward(grad_output):
return grad_output.squeeze(dim), None
return torch.unsqueeze(self, dim), backward
def abs(self):
def backward(grad_output):
return grad_output * self.sign()
return torch.abs(self), backward