-
Notifications
You must be signed in to change notification settings - Fork 0
/
fuse_linear.cpp
136 lines (120 loc) · 4.78 KB
/
fuse_linear.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#include <torch/csrc/jit/passes/fuse_linear.h>
#include <torch/csrc/jit/passes/graph_rewrite_helper.h>
#include <torch/csrc/jit/passes/quantization/helper.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
namespace torch {
namespace jit {
void FuseLinear(std::shared_ptr<Graph>& graph) {
std::string addmm_pattern = R"IR(
graph(%input, %weight_t, %bias, %beta, %alpha):
%res = aten::addmm(%bias, %input, %weight_t, %beta, %alpha)
return (%res))IR";
std::string fused_linear_addmm = R"IR(
graph(%input, %weight_t, %bias, %beta, %alpha):
%weight = aten::t(%weight_t)
%res = aten::linear(%input, %weight, %bias)
return (%res))IR";
auto beta_is_one = [](const Match& match,
const std::unordered_map<std::string, Value*>& vmap) {
return is_int_constant(match, vmap, "beta", 1);
};
// check %weight_t is produced by `aten::t` to make sure
// we can transform the pattern to `aten::linear`
auto weight_transposed =
[](const Match& match,
const std::unordered_map<std::string, Value*>& vmap) {
const auto& match_vmap = match.values_map;
auto v = match_vmap.at(vmap.at("weight_t"));
return v->node()->kind() == Symbol::aten("t");
};
// replace addmm pattern to linear
SubgraphRewriter addmm_to_linear;
std::vector<std::pair<std::string, std::string>> value_mappings(
{{"weight", "res"}, {"res", "res"}});
addmm_to_linear.RegisterRewritePattern(
addmm_pattern, fused_linear_addmm, value_mappings);
addmm_to_linear.runOnGraph(
graph, {aten_add_alpha_is_one, beta_is_one, weight_transposed});
std::string matmul_add_pattern = R"IR(
graph(%input, %weight_t, %bias, %alpha):
%output = aten::matmul(%input, %weight_t)
%res = aten::add_(%output, %bias, %alpha)
return (%res))IR";
std::string fused_linear_matmul = R"IR(
graph(%input, %weight_t, %bias, %alpha):
%weight = aten::t(%weight_t)
%res = aten::linear(%input, %weight, %bias)
return (%res))IR";
value_mappings = {{"weight", "output"}, {"res", "output"}};
// replace matmul + add pattern to linear
SubgraphRewriter matmuladd_to_linear;
matmuladd_to_linear.RegisterRewritePattern(
matmul_add_pattern, fused_linear_matmul, value_mappings);
matmuladd_to_linear.runOnGraph(
graph, {aten_add_alpha_is_one, weight_transposed});
std::string matmul_pattern = R"IR(
graph(%input, %weight_t):
%output = aten::matmul(%input, %weight_t)
return (%output))IR";
std::string fused_linear_bias_none = R"IR(
graph(%input, %weight_t):
%weight = aten::t(%weight_t)
%bias: Tensor? = prim::Constant()
%res = aten::linear(%input, %weight, %bias)
return (%res))IR";
// replace matmul with bias=None pattern to linear
SubgraphRewriter matmul_to_linear;
matmul_to_linear.RegisterRewritePattern(
matmul_pattern, fused_linear_bias_none, value_mappings);
matmul_to_linear.runOnGraph(graph, weight_transposed);
// clean up extra transpose for the weight of aten::linear
std::string linear_weight_extra_transpose = R"IR(
graph(%input, %weight, %bias):
%weight_t1 = aten::t(%weight)
%weight_t2 = aten::t(%weight_t1)
%res = aten::linear(%input, %weight_t2, %bias)
return (%res))IR";
std::string linear_weight_no_transpose = R"IR(
graph(%input, %weight, %bias):
%res = aten::linear(%input, %weight, %bias)
return (%res))IR";
value_mappings = {{"res", "res"}};
SubgraphRewriter cleanup;
cleanup.RegisterRewritePattern(
linear_weight_extra_transpose,
linear_weight_no_transpose,
value_mappings);
cleanup.runOnGraph(graph);
SwapFunctionalLinear(graph);
}
void SwapFunctionalLinear(Module& module) {
for (auto& method : module.get_methods()) {
std::shared_ptr<Graph> g = method.graph();
SwapFunctionalLinear(g);
}
for (Module m : module.children()) {
SwapFunctionalLinear(m);
}
}
void SwapFunctionalLinear(std::shared_ptr<Graph>& graph) {
std::string functional_linear = R"(
graph(%linear, %input, %weight, %bias):
%r = prim::CallFunction(%linear, %input, %weight, %bias)
return (%r) )";
std::string aten_linear = R"(
graph(%linear, %input, %weight, %bias):
%r = aten::linear(%input, %weight, %bias)
return (%r) )";
auto filter = [](const Match& match,
const std::unordered_map<std::string, Value*>& vmap) {
const auto& match_vmap = match.values_map;
auto linear = graph_rewrite_helper::getValue("linear", match_vmap, vmap);
auto func_name = graph_rewrite_helper::getFuncName(linear);
return func_name == "linear";
};
SubgraphRewriter rewriter;
rewriter.RegisterRewritePattern(functional_linear, aten_linear);
rewriter.runOnGraph(graph, filter);
}
} // namespace jit
} // namespace torch