-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmain_bigearthnet.py
95 lines (83 loc) · 3.56 KB
/
main_bigearthnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from pathlib import Path
from copy import deepcopy
from argparse import ArgumentParser
import warnings
warnings.simplefilter('ignore', UserWarning)
import torch
from torch import nn
from torchvision import models
import pytorch_lightning as pl
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint
from datasets.bigearthnet_datamodule import BigearthnetDataModule
from models.moco2_module import MocoV2
from models.ssl_finetuner import SSLFineTuner
def get_experiment_name(prefix, hparams):
mode = 'linprobe' if hparams.freeze_backbone else 'finetune'
return f'{prefix}-{mode}-lr={hparams.learning_rate}-epochs={hparams.max_epochs}-train_frac={hparams.train_frac}'
if __name__ == '__main__':
pl.seed_everything(42)
parser = ArgumentParser()
parser = Trainer.add_argparse_args(parser)
parser = SSLFineTuner.add_model_specific_args(parser)
parser = ArgumentParser(parents=[parser], conflict_handler='resolve', add_help=False)
parser.add_argument('--gpus', type=int, default=1)
parser.add_argument('--data_dir', type=str)
parser.add_argument('--lmdb', action='store_true')
parser.add_argument('--backbone_type', type=str, default='imagenet')
parser.add_argument('--base_encoder', type=str, default='resnet18')
parser.add_argument('--ckpt_path', type=str, default=None)
parser.add_argument('--max_epochs', type=int, default=100)
parser.add_argument('--train_frac', type=float, default=1)
parser.add_argument('--debug', action='store_true')
args = parser.parse_args()
datamodule = BigearthnetDataModule(
data_dir=args.data_dir,
lmdb=args.lmdb,
batch_size=args.batch_size,
num_workers=args.num_workers,
train_frac=args.train_frac
)
if args.backbone_type == 'random':
template_model = getattr(models, args.base_encoder)
backbone = template_model(pretrained=False)
emb_dim = backbone.fc.weight.shape[1]
backbone = nn.Sequential(*list(backbone.children())[:-1], nn.Flatten())
prefix = f'{args.base_encoder}-{args.backbone_type}'
elif args.backbone_type == 'imagenet':
template_model = getattr(models, args.base_encoder)
backbone = template_model(pretrained=True)
emb_dim = backbone.fc.weight.shape[1]
backbone = nn.Sequential(*list(backbone.children())[:-1], nn.Flatten())
prefix = f'{args.base_encoder}-{args.backbone_type}'
elif args.backbone_type == 'pretrain':
model = MocoV2.load_from_checkpoint(args.ckpt_path)
emb_dim = model.mlp_dim
backbone = deepcopy(model.encoder_q)
prefix = f'{model.hparams.base_encoder}-{args.backbone_type}-{model.hparams.data_mode}'
else:
raise ValueError()
model = SSLFineTuner(
backbone=backbone,
in_features=emb_dim,
num_classes=datamodule.num_classes,
hidden_dim=None,
**vars(args)
)
model.example_input_array = torch.zeros((1, 3, 128, 128))
if args.debug:
logger = False
checkpoint_callback = False
else:
experiment_name = get_experiment_name(prefix, args)
logger = TensorBoardLogger(save_dir=str(Path.cwd() / 'logs' / 'finetune'), name=experiment_name)
checkpoint_callback = ModelCheckpoint(filename='{epoch}')
trainer = Trainer.from_argparse_args(
args,
logger=logger,
checkpoint_callback=checkpoint_callback,
weights_summary='full',
check_val_every_n_epoch=10
)
trainer.fit(model, datamodule=datamodule)