-
Notifications
You must be signed in to change notification settings - Fork 1
/
nbodympi2.c
253 lines (215 loc) · 6.69 KB
/
nbodympi2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#include <mpi.h>
#include <stdio.h>
#include <math.h>
/*
VERY simple version of an n-body code. This uses the simple but highly
suboptimal n^2 algorithm, and does not take advantage of symmetry.
The time integrator is a simple leapfrog scheme.
*/
extern void srand48();
extern double drand48();
/* Pipeline version of the algorithm... */
/* we really need the velocities as well... */
typedef struct {
double x, y, z;
double vx, vy, vz;
double mass;
} Particle;
/* Save the forces and old velocities */
typedef struct {
double vxold, vyold, vzold;
double ax, ay, az;
} ParticleV;
#define MAX_PARTICLES 4000
/* This is 2-D only */
void ComputeForces( particles, pv, npart,
recvbuf, rlen, max_f )
Particle *particles, *recvbuf;
ParticleV *pv;
int npart, rlen;
double *max_f;
{
int i, j;
double xi, yi, mi, rx, ry, mj, r, fx, fy;
double xnew, ynew, rmin;
/* Compute forces (2D only) */
for (i=0; i<npart; i++) {
rmin = 100.0;
xi = particles[i].x;
yi = particles[i].y;
fx = 0.0;
fy = 0.0;
for (j=0; j<rlen; j++) {
rx = xi - recvbuf[j].x;
ry = yi - recvbuf[j].y;
mj = recvbuf[j].mass;
r = rx * rx + ry * ry;
/* ignore overlap and same particle */
if (r == 0.0) continue;
if (r < rmin) rmin = r;
/* compute forces */
r = r * sqrt(r);
fx += mj * rx / r;
fy += mj * ry / r;
}
pv[i].fx -= fx;
pv[i].fy -= fy;
/* Compute a rough estimate of (1/m)|df / dx| */
fx = sqrt(fx*fx + fy*fy)/rmin;
if (fx > *max_f) *max_f = fx;
}
}
void PrintParticles( particles, npart, t )
Particle *particles;
int npart;
double t;
{
int i;
FILE *f = fopen("save.txt", "ab");
if (f == NULL)
{
printf("error opening save file\n");
}
for (i=0; i<npart; i++) {
/* printf( "[%f] (%f,%f)\n", t, particles[i].x, particles[i].y ); */
fprintf(f, "%f %f %f\n", particles[i].x, particles[i].y );
}
fclose(f);
}
int main( argc, argv )
int argc;
char **argv;
{
Particle particles[MAX_PARTICLES]; /* Particles on LOCAL node */
ParticleV pv[MAX_PARTICLES]; /* Particle velocity */
Particle *recvbuf;
int rank, size, npart, i, j; /* location of local particles */
int step, rlen;
int totpart, /* total number of particles */
cnt; /* number of times in loop */
MPI_Datatype particletype;
double time; /* Computation time */
double dt, dt_old; /* Integration time step */
double t; /* Time actually integrated to */
double a0, a1, a2;
void *pipe; /* Opaque structure for communication
pipe */
int debug_flag = 1;
MPI_Init( &argc, &argv );
MPI_Comm_rank( MPI_COMM_WORLD, &rank );
MPI_Comm_size( MPI_COMM_WORLD, &size );
/* Everyone COULD have a different size ... */
npart = 2 * size;
if (argc > 1)
npart = atoi(argv[1]) / size;
if (npart > MAX_PARTICLES)
MPI_Abort( MPI_COMM_WORLD, 1 );
MPI_Allreduce( &npart, &totpart, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD );
cnt = 100;
MPI_Type_contiguous( 4, MPI_DOUBLE, &particletype );
MPI_Type_commit( &particletype );
/* Generate the initial values */
srand48( rank * 117 );
for (i=0; i<npart; i++) {
particles[i].x = drand48();
particles[i].y = drand48();
particles[i].z = drand48();
/* Normalize the mass with respect to the gravitational constant
(multiply by sqrt(G), G = 6.668E-8 dyne-cm^2/gm^2 or
6.668E-16 Joule-m^2/kg^2, sqrt(G) = 2.582e-8
*/
particles[i].mass = 1 * 2.582e-8;
/* This is the zero initial velocity case */
pv[i].xold = particles[i].x;
pv[i].yold = particles[i].y;
pv[i].zold = particles[i].z;
pv[i].fx = 0;
pv[i].fy = 0;
pv[i].fz = 0;
}
/* Add a particle in the center with much larger mass */
if (rank == 0) {
particles[0].x = 0.5;
particles[0].y = 0.5;
particles[0].z = 0.5;
particles[0].mass = 1000 * 2.582e-8;
pv[0].xold = particles[0].x;
pv[0].yold = particles[0].y;
pv[0].zold = particles[0].z;
pv[0].fx = 0;
pv[0].fy = 0;
pv[0].fz = 0;
}
if (debug_flag && rank == 0)
PrintParticles( particles, npart, 0.0 );
dt = 0.001;
dt_old = 0.001;
/* Create a communication pipe */
MPE_Pipe_create( MPI_COMM_WORLD, particletype, npart, &pipe );
time = MPI_Wtime();
t = 0.0;
while (cnt--) {
double max_f, dt_est, new_dt, dt_new;
/* Load the initial sendbuffer */
MPE_Pipe_start( pipe, particles, npart, 1 );
/* integation is a0 * x^+ + a1 * x + a2 * x^- = f / m */
a0 = 2.0 / (dt * (dt + dt_old));
a2 = 2.0 / (dt_old * (dt + dt_old));
a1 = -(a0 + a2); /* also -2/(dt*dt_old) */
/* Compute self forces (on same processor) */
max_f = 0;
ComputeForces( particles, pv, npart, particles, npart, &max_f );
/* For other particles, compute interaction forces */
for (step=1; step<size; step++) {
/* Push pipe, get new data */
MPE_Pipe_push( pipe, &recvbuf, &rlen );
/* Compute forces */
ComputeForces( particles, pv, npart, recvbuf, rlen, &max_f );
}
/* Once we have the forces, we compute the changes in position */
for (i=0; i<npart; i++) {
double xi, yi;
/* Very, very simple leapfrog time integration. We use a variable
step version to simplify time-step control. */
xi = particles[i].x;
yi = particles[i].y;
particles[i].x = (pv[i].fx - a1 * xi - a2 * pv[i].xold) / a0;
particles[i].y = (pv[i].fy - a1 * yi - a2 * pv[i].yold) / a0;
pv[i].xold = xi;
pv[i].yold = yi;
pv[i].fx = 0;
pv[i].fy = 0;
}
t += dt;
if (debug_flag && rank == 0)
PrintParticles( particles, npart, t );
/* Recompute a time step. Stability criteria is roughly
2 = dt * sqrt(1/m |df/dx|), or
2/sqrt(1/m |df/dx|) >= dt. We leave a little room */
dt_est = 1.0/sqrt(max_f);
/* Set a minimum: */
if (dt_est < 1.0e-6) dt_est = 1.0e-6;
MPI_Allreduce( &dt_est, &dt_new, 1, MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD );
/* Modify time step */
if (dt_new < dt) {
dt_old = dt;
dt = dt_new;
if (debug_flag && rank == 0)
printf( "#New time step is %f\n", dt );
}
else if (dt_new > 4.0 * dt) {
dt_old = dt;
dt *= 2.0;
if (debug_flag && rank == 0)
printf( "#New time step is %f\n", dt );
}
/* We could do graphics here (move particles on the display) */
}
time = MPI_Wtime() - time;
if (rank == 0) {
printf( "#Computed %d particles in %f seconds\n", totpart, time );
}
MPE_Pipe_free( &pipe );
MPI_Type_free( &particletype );
MPI_Finalize();
}