-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsuperresolution.py
323 lines (271 loc) · 16.8 KB
/
superresolution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Superresolution network architectures from the paper
"Efficient Geometry-aware 3D Generative Adversarial Networks"."""
import torch
from training.networks_stylegan2 import Conv2dLayer, SynthesisLayer, ToRGBLayer
from torch_utils.ops import upfirdn2d
from torch_utils import persistence
from torch_utils import misc
from training.networks_stylegan2 import SynthesisBlock
import numpy as np
from training.networks_stylegan3 import SynthesisLayer as AFSynthesisLayer
#----------------------------------------------------------------------------
# for 512x512 generation
@persistence.persistent_class
class SuperresolutionHybrid8X(torch.nn.Module):
def __init__(self, channels, img_resolution, sr_num_fp16_res, sr_antialias,
num_fp16_res=4, conv_clamp=None, channel_base=None, channel_max=None,# IGNORE
**block_kwargs):
super().__init__()
assert img_resolution == 512
use_fp16 = sr_num_fp16_res > 0
self.input_resolution = 128
self.sr_antialias = sr_antialias
self.block0 = SynthesisBlock(channels, 128, w_dim=512, resolution=256,
img_channels=3, is_last=False, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs)
self.block1 = SynthesisBlock(128, 64, w_dim=512, resolution=512,
img_channels=3, is_last=True, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs)
self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1]))
def forward(self, rgb, x, ws, **block_kwargs):
ws = ws[:, -1:, :].repeat(1, 3, 1)
if x.shape[-1] != self.input_resolution:
x = torch.nn.functional.interpolate(x, size=(self.input_resolution, self.input_resolution),
mode='bilinear', align_corners=False, antialias=self.sr_antialias)
rgb = torch.nn.functional.interpolate(rgb, size=(self.input_resolution, self.input_resolution),
mode='bilinear', align_corners=False, antialias=self.sr_antialias)
x, rgb = self.block0(x, rgb, ws, **block_kwargs)
x, rgb = self.block1(x, rgb, ws, **block_kwargs)
return rgb
#----------------------------------------------------------------------------
# for 256x256 generation
@persistence.persistent_class
class SuperresolutionHybrid4X(torch.nn.Module):
def __init__(self, channels, img_resolution, sr_num_fp16_res, sr_antialias,
num_fp16_res=4, conv_clamp=None, channel_base=None, channel_max=None,# IGNORE
**block_kwargs):
super().__init__()
assert img_resolution == 256
use_fp16 = sr_num_fp16_res > 0
self.sr_antialias = sr_antialias
self.input_resolution = 128
self.block0 = SynthesisBlockNoUp(channels, 128, w_dim=512, resolution=128,
img_channels=3, is_last=False, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs)
self.block1 = SynthesisBlock(128, 64, w_dim=512, resolution=256,
img_channels=3, is_last=True, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs)
self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1]))
def forward(self, rgb, x, ws, **block_kwargs):
ws = ws[:, -1:, :].repeat(1, 3, 1)
if x.shape[-1] < self.input_resolution:
x = torch.nn.functional.interpolate(x, size=(self.input_resolution, self.input_resolution),
mode='bilinear', align_corners=False, antialias=self.sr_antialias)
rgb = torch.nn.functional.interpolate(rgb, size=(self.input_resolution, self.input_resolution),
mode='bilinear', align_corners=False, antialias=self.sr_antialias)
x, rgb = self.block0(x, rgb, ws, **block_kwargs)
x, rgb = self.block1(x, rgb, ws, **block_kwargs)
return rgb
#----------------------------------------------------------------------------
# for 128 x 128 generation
@persistence.persistent_class
class SuperresolutionHybrid2X(torch.nn.Module):
def __init__(self, channels, img_resolution, sr_num_fp16_res, sr_antialias,
num_fp16_res=4, conv_clamp=None, channel_base=None, channel_max=None,# IGNORE
**block_kwargs):
super().__init__()
assert img_resolution == 128
use_fp16 = sr_num_fp16_res > 0
self.input_resolution = 64
self.sr_antialias = sr_antialias
self.block0 = SynthesisBlockNoUp(channels, 128, w_dim=512, resolution=64,
img_channels=3, is_last=False, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs)
self.block1 = SynthesisBlock(128, 64, w_dim=512, resolution=128,
img_channels=3, is_last=True, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs)
self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1]))
def forward(self, rgb, x, ws, **block_kwargs):
ws = ws[:, -1:, :].repeat(1, 3, 1)
if x.shape[-1] != self.input_resolution:
x = torch.nn.functional.interpolate(x, size=(self.input_resolution, self.input_resolution),
mode='bilinear', align_corners=False, antialias=self.sr_antialias)
rgb = torch.nn.functional.interpolate(rgb, size=(self.input_resolution, self.input_resolution),
mode='bilinear', align_corners=False, antialias=self.sr_antialias)
x, rgb = self.block0(x, rgb, ws, **block_kwargs)
x, rgb = self.block1(x, rgb, ws, **block_kwargs)
return rgb
#----------------------------------------------------------------------------
# TODO: Delete (here for backwards compatibility with old 256x256 models)
@persistence.persistent_class
class SuperresolutionHybridDeepfp32(torch.nn.Module):
def __init__(self, channels, img_resolution, sr_num_fp16_res,
num_fp16_res=4, conv_clamp=None, channel_base=None, channel_max=None,# IGNORE
**block_kwargs):
super().__init__()
assert img_resolution == 256
use_fp16 = sr_num_fp16_res > 0
self.input_resolution = 128
self.block0 = SynthesisBlockNoUp(channels, 128, w_dim=512, resolution=128,
img_channels=3, is_last=False, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs)
self.block1 = SynthesisBlock(128, 64, w_dim=512, resolution=256,
img_channels=3, is_last=True, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs)
self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1]))
def forward(self, rgb, x, ws, **block_kwargs):
ws = ws[:, -1:, :].repeat(1, 3, 1)
if x.shape[-1] < self.input_resolution:
x = torch.nn.functional.interpolate(x, size=(self.input_resolution, self.input_resolution),
mode='bilinear', align_corners=False)
rgb = torch.nn.functional.interpolate(rgb, size=(self.input_resolution, self.input_resolution),
mode='bilinear', align_corners=False)
x, rgb = self.block0(x, rgb, ws, **block_kwargs)
x, rgb = self.block1(x, rgb, ws, **block_kwargs)
return rgb
#----------------------------------------------------------------------------
@persistence.persistent_class
class SynthesisBlockNoUp(torch.nn.Module):
def __init__(self,
in_channels, # Number of input channels, 0 = first block.
out_channels, # Number of output channels.
w_dim, # Intermediate latent (W) dimensionality.
resolution, # Resolution of this block.
img_channels, # Number of output color channels.
is_last, # Is this the last block?
architecture = 'skip', # Architecture: 'orig', 'skip', 'resnet'.
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations.
conv_clamp = 256, # Clamp the output of convolution layers to +-X, None = disable clamping.
use_fp16 = False, # Use FP16 for this block?
fp16_channels_last = False, # Use channels-last memory format with FP16?
fused_modconv_default = True, # Default value of fused_modconv. 'inference_only' = True for inference, False for training.
**layer_kwargs, # Arguments for SynthesisLayer.
):
assert architecture in ['orig', 'skip', 'resnet']
super().__init__()
self.in_channels = in_channels
self.w_dim = w_dim
self.resolution = resolution
self.img_channels = img_channels
self.is_last = is_last
self.architecture = architecture
self.use_fp16 = use_fp16
self.channels_last = (use_fp16 and fp16_channels_last)
self.fused_modconv_default = fused_modconv_default
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
self.num_conv = 0
self.num_torgb = 0
if in_channels == 0:
self.const = torch.nn.Parameter(torch.randn([out_channels, resolution, resolution]))
if in_channels != 0:
self.conv0 = SynthesisLayer(in_channels, out_channels, w_dim=w_dim, resolution=resolution,
conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs)
self.num_conv += 1
self.conv1 = SynthesisLayer(out_channels, out_channels, w_dim=w_dim, resolution=resolution,
conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs)
self.num_conv += 1
if is_last or architecture == 'skip':
self.torgb = ToRGBLayer(out_channels, img_channels, w_dim=w_dim,
conv_clamp=conv_clamp, channels_last=self.channels_last)
self.num_torgb += 1
if in_channels != 0 and architecture == 'resnet':
self.skip = Conv2dLayer(in_channels, out_channels, kernel_size=1, bias=False, up=2,
resample_filter=resample_filter, channels_last=self.channels_last)
def forward(self, x, img, ws, force_fp32=False, fused_modconv=None, update_emas=False, **layer_kwargs):
_ = update_emas # unused
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim])
w_iter = iter(ws.unbind(dim=1))
if ws.device.type != 'cuda':
force_fp32 = True
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format
if fused_modconv is None:
fused_modconv = self.fused_modconv_default
if fused_modconv == 'inference_only':
fused_modconv = (not self.training)
# Input.
if self.in_channels == 0:
x = self.const.to(dtype=dtype, memory_format=memory_format)
x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1])
else:
misc.assert_shape(x, [None, self.in_channels, self.resolution, self.resolution])
x = x.to(dtype=dtype, memory_format=memory_format)
# Main layers.
if self.in_channels == 0:
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
elif self.architecture == 'resnet':
y = self.skip(x, gain=np.sqrt(0.5))
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs)
x = y.add_(x)
else:
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
# ToRGB.
# if img is not None:
# misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2])
# img = upfirdn2d.upsample2d(img, self.resample_filter)
if self.is_last or self.architecture == 'skip':
y = self.torgb(x, next(w_iter), fused_modconv=fused_modconv)
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format)
img = img.add_(y) if img is not None else y
assert x.dtype == dtype
assert img is None or img.dtype == torch.float32
return x, img
def extra_repr(self):
return f'resolution={self.resolution:d}, architecture={self.architecture:s}'
#----------------------------------------------------------------------------
# for 512x512 generation
@persistence.persistent_class
class SuperresolutionHybrid8XDC(torch.nn.Module):
def __init__(self, channels, img_resolution, sr_num_fp16_res, sr_antialias,
num_fp16_res=4, conv_clamp=None, channel_base=None, channel_max=None,# IGNORE
**block_kwargs):
super().__init__()
assert img_resolution == 512
use_fp16 = sr_num_fp16_res > 0
self.input_resolution = 128
self.sr_antialias = sr_antialias
self.block0 = SynthesisBlock(channels, 256, w_dim=512, resolution=256,
img_channels=3, is_last=False, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs)
self.block1 = SynthesisBlock(256, 128, w_dim=512, resolution=512,
img_channels=3, is_last=True, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs)
def forward(self, rgb, x, ws, **block_kwargs):
ws = ws[:, -1:, :].repeat(1, 3, 1)
if x.shape[-1] != self.input_resolution:
x = torch.nn.functional.interpolate(x, size=(self.input_resolution, self.input_resolution),
mode='bilinear', align_corners=False, antialias=self.sr_antialias)
rgb = torch.nn.functional.interpolate(rgb, size=(self.input_resolution, self.input_resolution),
mode='bilinear', align_corners=False, antialias=self.sr_antialias)
x, rgb = self.block0(x, rgb, ws, **block_kwargs)
x, rgb = self.block1(x, rgb, ws, **block_kwargs)
return rgb
@persistence.persistent_class
class SuperresolutionHybrid16XDC(torch.nn.Module):
def __init__(self, channels, img_resolution, sr_num_fp16_res, sr_antialias,
num_fp16_res=4, conv_clamp=None, channel_base=None, channel_max=None,# IGNORE
**block_kwargs):
super().__init__()
assert img_resolution == 1024
use_fp16 = sr_num_fp16_res > 0
self.input_resolution = 128
self.sr_antialias = sr_antialias
self.block0 = SynthesisBlock(channels, 256, w_dim=512, resolution=256,
img_channels=3, is_last=False, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs)
self.block1 = SynthesisBlock(256, 128, w_dim=512, resolution=512,
img_channels=3, is_last=False, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs)
self.block2 = SynthesisBlock(128, 64, w_dim=512, resolution=1024,
img_channels=3, is_last=True, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs)
def forward(self, rgb, x, ws, **block_kwargs):
ws = ws[:, -1:, :].repeat(1, 3, 1)
if x.shape[-1] != self.input_resolution:
x = torch.nn.functional.interpolate(x, size=(self.input_resolution, self.input_resolution),
mode='bilinear', align_corners=False, antialias=self.sr_antialias)
rgb = torch.nn.functional.interpolate(rgb, size=(self.input_resolution, self.input_resolution),
mode='bilinear', align_corners=False, antialias=self.sr_antialias)
x, rgb = self.block0(x, rgb, ws, **block_kwargs)
x, rgb = self.block1(x, rgb, ws, **block_kwargs)
x, rgb = self.block2(x, rgb, ws, **block_kwargs)
return rgb
#----------------------------------------------------------------------------