diff --git a/lib/iris/tests/unit/analysis/stats/test_pearsonr.py b/lib/iris/tests/unit/analysis/stats/test_pearsonr.py index 9b279450c9..d46bcd21ba 100644 --- a/lib/iris/tests/unit/analysis/stats/test_pearsonr.py +++ b/lib/iris/tests/unit/analysis/stats/test_pearsonr.py @@ -8,6 +8,10 @@ # importing anything else. import iris.tests as tests # isort:skip +from unittest import mock + +import dask +import dask.array import numpy as np import numpy.ma as ma import pytest @@ -37,16 +41,32 @@ def setup_method(self): @tests.skip_data class TestLazy(Mixin): - def test_perfect_corr(self): + @pytest.fixture + def mocked_compute(self, monkeypatch): + m_compute = mock.Mock(wraps=dask.base.compute) + + # The three dask compute functions are all the same function but monkeypatch + # does not automatically know that. + # https://stackoverflow.com/questions/77820437 + monkeypatch.setattr(dask.base, dask.base.compute.__name__, m_compute) + monkeypatch.setattr(dask, dask.compute.__name__, m_compute) + monkeypatch.setattr(dask.array, dask.array.compute.__name__, m_compute) + + return m_compute + + def test_perfect_corr(self, mocked_compute): r = stats.pearsonr(self.cube_a, self.cube_a, ["latitude", "longitude"]) + mocked_compute.assert_not_called() np.testing.assert_array_equal(r.data, np.array([1.0] * 6)) - def test_perfect_corr_all_dims(self): + def test_perfect_corr_all_dims(self, mocked_compute): r = stats.pearsonr(self.cube_a, self.cube_a) + mocked_compute.assert_not_called() np.testing.assert_array_equal(r.data, np.array([1.0])) - def test_compatible_cubes(self): + def test_compatible_cubes(self, mocked_compute): r = stats.pearsonr(self.cube_a, self.cube_b, ["latitude", "longitude"]) + mocked_compute.assert_not_called() np.testing.assert_array_almost_equal( r.data, [ @@ -59,13 +79,15 @@ def test_compatible_cubes(self): ], ) - def test_broadcast_cubes(self): + def test_broadcast_cubes(self, mocked_compute): r1 = stats.pearsonr( self.cube_a, self.cube_b[0, :, :], ["latitude", "longitude"] ) r2 = stats.pearsonr( self.cube_b[0, :, :], self.cube_a, ["latitude", "longitude"] ) + + mocked_compute.assert_not_called() r_by_slice = [ stats.pearsonr( self.cube_a[i, :, :], @@ -77,10 +99,12 @@ def test_broadcast_cubes(self): np.testing.assert_array_equal(r1.data, np.array(r_by_slice)) np.testing.assert_array_equal(r2.data, np.array(r_by_slice)) - def test_compatible_cubes_weighted(self): + def test_compatible_cubes_weighted(self, mocked_compute): r = stats.pearsonr( self.cube_a, self.cube_b, ["latitude", "longitude"], self.weights ) + + mocked_compute.assert_not_called() np.testing.assert_array_almost_equal( r.data, [ @@ -93,13 +117,15 @@ def test_compatible_cubes_weighted(self): ], ) - def test_broadcast_cubes_weighted(self): + def test_broadcast_cubes_weighted(self, mocked_compute): r = stats.pearsonr( self.cube_a, self.cube_b[0, :, :], ["latitude", "longitude"], weights=self.weights[0, :, :], ) + + mocked_compute.assert_not_called() r_by_slice = [ stats.pearsonr( self.cube_a[i, :, :], @@ -111,7 +137,7 @@ def test_broadcast_cubes_weighted(self): ] np.testing.assert_array_almost_equal(r.data, np.array(r_by_slice)) - def test_broadcast_transpose_cubes_weighted(self): + def test_broadcast_transpose_cubes_weighted(self, mocked_compute): # Reference is calculated with no transposition. r_ref = stats.pearsonr( self.cube_a, @@ -128,6 +154,7 @@ def test_broadcast_transpose_cubes_weighted(self): weights=self.weights[0, :, :], ) + mocked_compute.assert_not_called() # Should get the same result, but transposed. np.testing.assert_array_almost_equal(r_test.data, r_ref.data.T) @@ -140,21 +167,25 @@ def test_weight_error(self): weights=self.weights, ) - def test_mdtol(self): + def test_mdtol(self, mocked_compute): cube_small = self.cube_a[:, 0, 0] cube_small_masked = iris.util.mask_cube(cube_small, [0, 0, 0, 1, 1, 1]) r1 = stats.pearsonr(cube_small, cube_small_masked) r2 = stats.pearsonr(cube_small, cube_small_masked, mdtol=0.49) + + mocked_compute.assert_not_called() np.testing.assert_array_almost_equal(r1.data, np.array([0.74586593])) tests.assert_masked_array_equal(r2.data, ma.array([0], mask=[True])) - def test_common_mask_simple(self): + def test_common_mask_simple(self, mocked_compute): cube_small = self.cube_a[:, 0, 0] cube_small_masked = iris.util.mask_cube(cube_small, [0, 0, 0, 1, 1, 1]) r = stats.pearsonr(cube_small, cube_small_masked, common_mask=True) + + mocked_compute.assert_not_called() np.testing.assert_array_almost_equal(r.data, np.array([1.0])) - def test_common_mask_broadcast(self): + def test_common_mask_broadcast(self, mocked_compute): cube_small = iris.util.mask_cube(self.cube_a[:, 0, 0], [0, 0, 0, 0, 0, 1]) mask_2d = np.zeros((6, 2), dtype=bool) # 2d mask varies on unshared coord: @@ -174,6 +205,8 @@ def test_common_mask_broadcast(self): weights=self.weights[:, 0, 0], common_mask=True, ) + + mocked_compute.assert_not_called() np.testing.assert_array_almost_equal(r.data, np.array([1.0, 1.0])) # 2d mask does not vary on unshared coord: cube_small_2d.data.mask[0, 0] = 1 @@ -182,8 +215,8 @@ def test_common_mask_broadcast(self): class TestReal(TestLazy): - def setUp(self): - super().setUp() + def setup_method(self): + super().setup_method() for cube in [self.cube_a, self.cube_b]: _ = cube.data