From e0097b9aae3b7255fa6c4493b46ec4b91e76e073 Mon Sep 17 00:00:00 2001 From: Patrick Peglar Date: Tue, 6 Mar 2018 12:48:49 +0000 Subject: [PATCH] Ensure return type of wrapped lazy function; add test for new function. --- lib/iris/_lazy_data.py | 24 ++++--- .../lazy_data/test_wrap_lazy_elementwise.py | 68 +++++++++++++++++++ 2 files changed, 84 insertions(+), 8 deletions(-) create mode 100644 lib/iris/tests/unit/lazy_data/test_wrap_lazy_elementwise.py diff --git a/lib/iris/_lazy_data.py b/lib/iris/_lazy_data.py index 824b8ed27b1..81518a3f930 100644 --- a/lib/iris/_lazy_data.py +++ b/lib/iris/_lazy_data.py @@ -174,12 +174,20 @@ def wrap_lazy_elementwise(lazy_array, elementwise_op): * elementwise_op: The elementwise (numpy) array operation to apply. + .. note: + + A single-point "dummy" call is made to the operation function, to + determine dtype of the result. + This return dtype should be stable in actual operation (!) + """ - # This is just an Iris wrapper for the Dask operation. - # For now, we support only a single argument array, and assume that the - # output dtype is the same as the input. This scope is intentionally - # minimal : we can extend it later as needed. - - # Note: pass dtype, to prevent Dask making a test call to work it out. - return da.map_blocks(elementwise_op, - lazy_array, dtype=lazy_array.dtype) + # This is just a wrapper to provide an Iris-specific abstraction for a + # lazy operation in Dask (map_blocks). + + # Explicitly determine the return type with a dummy call. + # This makes good practical sense for unit conversions, as a Unit.convert + # call may cast to float, or not, depending on unit equality : Thus, it's + # much safer to get cf_units to decide that for us. + dtype = elementwise_op(np.zeros(1, lazy_array.dtype)).dtype + + return da.map_blocks(elementwise_op, lazy_array, dtype=dtype) diff --git a/lib/iris/tests/unit/lazy_data/test_wrap_lazy_elementwise.py b/lib/iris/tests/unit/lazy_data/test_wrap_lazy_elementwise.py new file mode 100644 index 00000000000..01f8ce16795 --- /dev/null +++ b/lib/iris/tests/unit/lazy_data/test_wrap_lazy_elementwise.py @@ -0,0 +1,68 @@ +# (C) British Crown Copyright 2018, Met Office +# +# This file is part of Iris. +# +# Iris is free software: you can redistribute it and/or modify it under +# the terms of the GNU Lesser General Public License as published by the +# Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# Iris is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public License +# along with Iris. If not, see . +"""Test function :func:`iris._lazy data.wrap_lazy_elementwise`.""" + +from __future__ import (absolute_import, division, print_function) +from six.moves import (filter, input, map, range, zip) # noqa + +# Import iris.tests first so that some things can be initialised before +# importing anything else. +import iris.tests as tests + +import numpy as np + +from iris._lazy_data import as_lazy_data, is_lazy_data + +from iris._lazy_data import wrap_lazy_elementwise + + +def _test_elementwise_op(array): + # Promotes the type of a bool argument, but not a float. + return array + 1 + + +class Test_is_lazy_data(tests.IrisTest): + def test_basic(self): + concrete_array = np.arange(30).reshape((2, 5, 3)) + lazy_array = as_lazy_data(concrete_array) + wrapped = wrap_lazy_elementwise(lazy_array, + _test_elementwise_op) + self.assertTrue(is_lazy_data(wrapped)) + self.assertArrayAllClose(wrapped.compute(), + _test_elementwise_op(concrete_array)) + + def test_dtype_same(self): + concrete_array = np.array([3.], dtype=np.float16) + lazy_array = as_lazy_data(concrete_array) + wrapped = wrap_lazy_elementwise(lazy_array, + _test_elementwise_op) + self.assertTrue(is_lazy_data(wrapped)) + self.assertEqual(wrapped.dtype, np.float16) + self.assertEqual(wrapped.compute().dtype, np.float16) + + def test_dtype_change(self): + concrete_array = np.array([True, False]) + lazy_array = as_lazy_data(concrete_array) + wrapped = wrap_lazy_elementwise(lazy_array, + _test_elementwise_op) + self.assertTrue(is_lazy_data(wrapped)) + self.assertEqual(wrapped.dtype, np.int) + self.assertEqual(wrapped.compute().dtype, wrapped.dtype) + + +if __name__ == '__main__': + tests.main()