You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository has been archived by the owner on Sep 9, 2024. It is now read-only.
num_data_sets = 1
num_trials = 10
sigma = 1.0
n_vals = round.(Int, exp10.(range(2.0,stop=4.0,length=7)))
k = 5
d = 10
mses = Dict{String, Array{Float64, 2}}()
times = Dict{String, Array{Float64, 2}}()
for algo_name in keys(algos)
mses[algo_name] =Array(Float64, length(n_vals), num_trials * num_data_sets)
times[algo_name] = Array(Float64, length(n_vals), num_trials * num_data_sets)
end
Warm-up for pre-compilation
n_warmup = 100
y, ystar, X = generate_equal_size_random_regression_data(k, n_warmup, d, sigma); @printf("Warm-up with n = %d\n", n_warmup)
for (algo_name, algo_fun) in algos
yhat_partition = algo_fun(X, y, k)
end
for (nii, n) in enumerate(n_vals) @printf("n = %d ", n)
tic()
for iidata = 1:num_data_sets
@printf("*")
for ii = 1:num_trials
@printf(".")
#@printf(" trial %d\n", ii)
y, ystar, X = generate_equal_size_random_regression_data(k, n, d, sigma);
for (algo_name, algo_fun) in algos
#@printf(" algorithm %s\n", algo_name)
start_time = time_ns()
yhat_partition = algo_fun(X, y, k)
end_time = time_ns()
yhat = partition_to_vector(X, yhat_partition)
mses[algo_name][nii, (iidata - 1) * num_trials + ii] = mse(yhat, ystar)
times[algo_name][nii, (iidata - 1) * num_trials + ii] = 1e-9 * (end_time - start_time)
end
end
end
elapsed = toq()
@printf(" %f seconds\n", elapsed)
num_data_sets = 1
num_trials = 10
sigma = 1.0
n_vals = round.(Int, exp10.(range(2.0,stop=4.0,length=7)))
k = 5
d = 10
mses = Dict{String, Array{Float64, 2}}()
times = Dict{String, Array{Float64, 2}}()
for algo_name in keys(algos)
mses[algo_name] =Array(Float64, length(n_vals), num_trials * num_data_sets)
times[algo_name] = Array(Float64, length(n_vals), num_trials * num_data_sets)
end
Warm-up for pre-compilation
n_warmup = 100
y, ystar, X = generate_equal_size_random_regression_data(k, n_warmup, d, sigma);
@printf("Warm-up with n = %d\n", n_warmup)
for (algo_name, algo_fun) in algos
yhat_partition = algo_fun(X, y, k)
end
for (nii, n) in enumerate(n_vals)
@printf("n = %d ", n)
end
mses_mean = Dict{AbstractString, Array{Float64, 1}}()
mses_std = Dict{AbstractString, Array{Float64, 1}}()
times_mean = Dict{AbstractString, Array{Float64, 1}}()
times_std = Dict{AbstractString, Array{Float64, 1}}()
for algo_name in keys(mses)
mses_mean[algo_name] = vec(mean(mses[algo_name], 2))
mses_std[algo_name] = vec(std(mses[algo_name], 2))
times_mean[algo_name] = vec(mean(times[algo_name], 2))
times_std[algo_name] = vec(std(times[algo_name], 2))
end
MethodError: no method matching Array(::Type{Float64}, ::Int32, ::Int32)
Closest candidates are:
Array(!Matched::LinearAlgebra.UniformScaling, ::Integer, ::Integer) at C:\cygwin\home\Administrator\buildbot\worker\package_win32\build\usr\share\julia\stdlib\v1.1\LinearAlgebra\src\uniformscaling.jl:345
Stacktrace:
[1] top-level scope at .\In[36]:10
The text was updated successfully, but these errors were encountered: