diff --git a/Project.toml b/Project.toml index c771ea448..72a79b18c 100644 --- a/Project.toml +++ b/Project.toml @@ -29,7 +29,7 @@ DiffEqFluxDataInterpolationsExt = "DataInterpolations" ADTypes = "1.5" Aqua = "0.8.7" BenchmarkTools = "1.5.0" -Boltz = "0.4.1" +Boltz = "0.4.2" ChainRulesCore = "1" ComponentArrays = "0.15.17" ConcreteStructs = "0.2" diff --git a/docs/src/examples/mnist_conv_neural_ode.md b/docs/src/examples/mnist_conv_neural_ode.md index 28e1b09d5..f67262780 100644 --- a/docs/src/examples/mnist_conv_neural_ode.md +++ b/docs/src/examples/mnist_conv_neural_ode.md @@ -22,7 +22,7 @@ ENV["DATADEPS_ALWAYS_ACCEPT"] = true function loadmnist(batchsize) # Load MNIST - dataset = MNIST(; split = :train) + dataset = MNIST(; split = :train)[1:2000] # Partial load for demonstration imgs = dataset.features labels_raw = dataset.targets @@ -114,6 +114,5 @@ end # Train the NN-ODE and monitor the loss and weights. res = Optimization.solve(opt_prob, opt, dataloader; maxiters = 5, callback) acc = accuracy(m, dataloader, res.u, st) -@assert acc > 0.8 # hide acc # hide ``` diff --git a/docs/src/examples/mnist_neural_ode.md b/docs/src/examples/mnist_neural_ode.md index 89d8482ca..51a67fa87 100644 --- a/docs/src/examples/mnist_neural_ode.md +++ b/docs/src/examples/mnist_neural_ode.md @@ -20,7 +20,7 @@ logitcrossentropy = CrossEntropyLoss(; logits = Val(true)) function loadmnist(batchsize) # Load MNIST - dataset = MNIST(; split = :train) + dataset = MNIST(; split = :train)[1:2000] # Partial load for demonstration imgs = dataset.features labels_raw = dataset.targets @@ -104,7 +104,7 @@ end # Train the NN-ODE and monitor the loss and weights. res = Optimization.solve(opt_prob, opt, dataloader; callback, maxiters = 5) -@assert accuracy(m, dataloader, res.u, st) > 0.8 +accuracy(m, dataloader, res.u, st) ``` ## Step-by-Step Description @@ -151,7 +151,7 @@ logitcrossentropy = CrossEntropyLoss(; logits = Val(true)) function loadmnist(batchsize) # Load MNIST - dataset = MNIST(; split = :train) + dataset = MNIST(; split = :train)[1:2000] # Partial load for demonstration imgs = dataset.features labels_raw = dataset.targets @@ -324,7 +324,5 @@ for Neural ODE is given by `nn_ode.p`: ```@example mnist # Train the NN-ODE and monitor the loss and weights. res = Optimization.solve(opt_prob, opt, dataloader; callback, maxiters = 5) -acc = accuracy(m, dataloader, res.u, st) -@assert acc > 0.8 # hide -acc # hide +accuracy(m, dataloader, res.u, st) ```