diff --git a/.buildkite/pipeline.yml b/.buildkite/pipeline.yml index eb6978be..14462213 100644 --- a/.buildkite/pipeline.yml +++ b/.buildkite/pipeline.yml @@ -14,7 +14,7 @@ steps: queue: "juliagpu" cuda: "*" env: - GROUP: "CUDA" + BACKEND_GROUP: "CUDA" if: build.message !~ /\[skip tests\]/ timeout_in_minutes: 240 matrix: @@ -54,7 +54,5 @@ steps: timeout_in_minutes: 240 env: - RETESTITEMS_NWORKERS: 4 - RETESTITEMS_NWORKER_THREADS: 2 SECRET_CODECOV_TOKEN: "fbSN+ZbScLIWr1FOpAu1Z8PYWFobqbLGFayOgZE1ebhE8LIH/PILGXUMcdm9gkXVSwgdETDD0s33k14lBkJ90O4dV9w6k79F/pEgzVHV8baMoXZG03BPMxztlcoRXrKtRtAp+MwoATc3Ldb9H5vqgAnVNn5rhn4Rp0Z6LOVRC43hbhKBBKYh/N4gqpIQlcW4dBXmELhlnMFnUILjwGRVgEt/zh8H+vmf0qiIulNIQ/rfGISROHqFML0QDL4icloiqX08J76ZP/gZCeg6rJ0gl3ok3IspNPz51rlbvijqsPNyIHWi29OrAtWX3qKHfrAOoGIrE1d5Oy4wx4XaN/YBhg==;U2FsdGVkX188gcRjkUNMEC2Z5fEFfhsYY4WJbhhINOuCUgqq9XNHVDbJhzFUFVQ+UiuPHFg7CW/gn+3IkSVyOA==" SECRET_DOCUMENTER_KEY: "jzyAET5IdazYwPAEZAmYmnBALb2dC1GPizCDCdt8xpjIi4ce6QbGGJMKo00ZNzJ/A7ii4bhqysVPXniifFwIGl7x+GSCeavwcSr15pfxJSqPuQYLKxESzIo+SM+l2uJWUz8KYMJ1tSt/Z3Up3qQfLeQFtR+f43b9QrLfhgZGAAdxpwu5VHdI3Xm/gZo5d8xEJ1xs4gqVP0e2A5EFr/j/exaWJL9+AvgO+Gko8NaJGG5B89zP1W2NBlpjttbwzj2naBhDx8A43Qe4eXm+BZd9CIZImiEJnnqoGxLkAyLDksbA68getUHW5z3nGyhWTrg5yfRqq0uyZZGTIOFz6dJrRg==;U2FsdGVkX19QOxLLkdNoQf7Rid3mcSR/renIHQ+/X3o0WxTmU8KDDxzfKuWPeK1fxMon8y45HCJv3HlMuzyfvPWrOmUXccfHK272D8vHu1kk/qZZw8nPd7iYBU9+VAIxwfmI3Av2gC+8tUlOcuUTEVMtMbi/MiLHp+phLYcELKzzrxL8VdrLzna81M+8xVLu7zzNuyK0cUPWLxRHcZc/fewK5Nh7EQ2x8u1b6e5zR0/AcqjCzMayD1RiE7QhRVGdF5GJYnAxc1eoyCwIjXTRfFo0a0Q2h6DEz9FEat/ZCekIuWyVrUkGbpsRqXUTrSH0An7FRRqRlZ9lStRaQY4Z3XBkoIh94vQlXwwLUH20jC7yRTV73CeYmhfigQckHL0JsjjIENz04Ac346fCV6WNQtEak0m3pN/BucoiwRA8l+WU4AK1r84cwGSphKk4SnWRAqeZVuFHck7NkcmHDEkO4C7WTP400oui/5NDMtVZbtnZfLxVzQqijxXj7IflWqF1vKqGmW5aPFMVNeAqwNGu3xM4oIIeHRu0u+k2S5dp1wqRVlMxYXdPtcoFzE0CNsMQdWgsvPd2eet38YRc8ftXNjKzoUSRRCbjGbVr0iJXeNmPg3jfZoVdILHjCN/hcz4nY+61P11OlJAdfE/6HzEr4VoOS4CN+s/brjWycmAKZo2+1e4fSV1xBH7t1spOlESLvsBhZNtj9/zUKgWgMct5hnF4anQcPAeRpz/MBrkwX1gW3WOvCxaqVlRfgGSy6boPgRd3p/ZXN4Xnfeg9RFqKZn21d2gcrc3/1+PTUEkOIv+C9BGszo9IaUziW/Tz2mVP386kX86SF4fF4y3PofcUT2FLTm8Q9ZJBnslOsRP8bq3rIjDiQR3Iz3uGctkGZPs+GOtCR5OrhnnS6BXxkGwt/n9PJsnbXt0Z4tuXihC1B8KfP7mzDvZr3q9X/DGKyZ+oMHdDI+f2+lRwx42nJnsu+nZW9lyhdIwWla9F1rIoVz59HbUrmUhsVmFQYfjy7Nl18g8Wh5r9CkFL/vr6Zpy5lj1J/vhe1501X2FIkKOnLAM73GwtAa4GkbHyu5rNcij6YoozPrJWT4KRNFWGVAqNZ1atG8WwmziwIl2KfBn8jiuP/8o6rXQkmrAzBr6jVnto5FTWnIexEmnbELs20XDck8pO5WQxU1IR9YhKMbrDGbn0jWzVoRmCWpaJgV1AkWu09a++DxIec4+Zt+3SZLj/H57XsBchWHmkFz4NVTBeSans26VmdDd3LxprT8qeH6cioceakmu6yegsKQnJGLmSNyUkHqBqmsCcvyTUyaQUBTFkjLmDeZB3Ifu2kD7AFdx5n58wdJTMZxYviybOCgCV4qe95v5XfIqthp5mF/0F1Wt9ZcEreFSM2Paj5GrQ+M25cZ+kqOSlMet51Q+QBCfQyDF8jdu3j1hVniwpgMI1gqyb2alRfyNx52elTqRn9hPqpFptGH4uJXi8H72YPe4fYkFS7wwELeRIv+nKkNYNLPQAyQFvZ/qB/PRI1YoFBbpi0Vi6iE9xLRq7QVvhJde2EgNbvQk8uakwV630Tht2OuwVdJu/PIbXsQ5i+EuknIlPRdQdhbEIkpuBHFAzxBqA2K92gJ4bbcOjGtDHc0pt0RtvIVoyyJMkYVzr1yBeMWEmsL8qYJ5yzuAFGqpCTmJzXE0ETZLDDJtxwSKj5M2vG59wPNfo9DF+LgJLF+94VydYGNOHy9KuY2Oo3ejV7iFXUtsEV3Id9EkNGq8+t5KIAGk6lnDcM1TTOAc5W8fGGNhYzlqgWK1n3nwPJLykqY7VFHPZjF8Il/8E1IubnPCIyOCTJwKqQlBB5td/bt7YIDEFmkpl7OvUwyc2uYkFmrxGv81OtopsYZOJ+WnwSkqqZ3p2MyqNj3xp92p8itz5tM3tzjrkdfPXsx1QJGY+rkZhCsSf6DSG18AFqI4+Q8uWUwqO5/TJb2z/F2LT88+wJfGPtwGeR+98XgvwjsMWIA/TZfwTrTQsZX2YOIf0bg3yjlEbFM16xAFAA2oItBuvbC6d6NIit4Dukn2WamnOceoTyO6mdHYRh5SBOryr3AWnBJZsUPL3HsC+Xiibgixuwjjalj+HOrAzDlQc8L0Z77dZJhpST0x/gwCleSA3lOKs7MA8ASolCaPVL2pPJXkb97mBxZx8k1n6abhK1w3QVJuYvp7CyGhavsYEqcR+vYx/T0tN4MVOjfRhimqhNihz0VDfY97YS5XavZV07jycqoAlufmH5VSwNbiy8/NY6Q2djc46ISbqvKr6Pf0TZBuJti2gIpm02Btm4rMCawVPpEPieU3GI77nhQp6orq0Zjl5f4XfOKnfcxiqdgip4SVFTglHBTWTiRFnGTF0I3VX4V+RRmqJwwKPN8cxDsNd6wSpylhDUAMfxEvvb+0vAt1yGNUC52OB4bSOXOyZIAU8+08xl7mYGIVUnoWHaR6Y0aHdnywJUuzQ2q3dotfnI1j72MzlHsTK6Lro3YiolDNJpTqLtxmSzkWctw/PfijnoEXtmDnZKptZ7t0v7oTAkdE3kk0RrnFTnMAkyCOREcFcyxglROCoDHsZx3Q+MkWLG/tPMVpuMRhy9gJ1WZTpeExNgs5KgwtrS1HJg7KunWXguFH/zDgODTdKclgfvsVe/SCtlpbO6z5fZji0j1y9LRBVLyTN/LzeR40OBX3r0abk4SGyslAdZMgg2WJdSLVAJ+MtxxbnlKDXDNmu5YehpWdTvm/wIYwTKw+1A48plKburw8fBEofVy9Ubmc8E4z6hQRX2cwcNN9N/60aCwlpM7wVbYfBo4Hw9H/6EawjbRRN9UwmgsfmYUuqCTSi8fNi2dR36bqaoHHURgyqW7DiR7BYgVnOZ+B/2GM8uO2rYgSOhVJf+OK+2HsNly0MW5v3/ft6W7PEsab8IweYWmPLVvJNfHW5CDP6KotdDgm/DcD5owgQ12D95BGWawR5gQxpyjX9uIlxORPq6h0Z79j8gFFsYIfddIdxsJZS9r59FtZe2JL7nK3Dum07tXDGlBCUD4mwv+LNxOJLa8DM6YoEd4Nh8qosfQNJu505Vh/r+PgegnFvG9LRkwQnk8fgPTNKThB067s82YuVg0mv4O9q4Hlm13wTWuvlMr4k1ShBrNyy08YaFCu2hmZm7RizU1rU5MpieiwpQ6cGx+sHBTszB+c89045n2TM4VUedi+vjEq2KuhmIl9ID0EHvWDy5iwOQV5nJ7Rk/Alky2GRZ1CpnJPN29q5lrs6fhvfPquolJTyBTNgVjQ7f0z1zuUQFdhWQX5BFyq/bT46qc+X6dSOvlFenioPDe5MYpA3SZCi2lmVQqHnTOcRZp2HtYpoRUzNB6cT7P1wkRTvAR5PQyuAknkKB+T6HvRb2H8EBLfk+imlyu7mb2iAJNORpZ0Rz+no/5A3wd6qHfTq27h/CDZ91YqGamylrLBdFqyefFYfSbFa1BKikiavpZnYh19hHNl9v0Q4Tkb7ogy7biw8icOvMPWCrxd50zoY1EUe2maNKtkyytJeEOV+Yj6VaUa88M+7WSKaK8QbEB+fBKmwvGkknRKs8lYRoABChwqDZ7M+98pL057QbquxseKX6alzV+IOHlO7I8csRHnF6OpVQG6wdzJZhEwg/0n1K2qTExF9Z3WzUoiQ+NVC3gRQ9Au+x3fpkuLu85lOVjelX3JtdVt1T3623sqxmcEr/TCZT/+X1QyflAkJyw1EMq4sat7wjYK3ugyPPPjo/v2h4TuaoWc0X/+qJPV/o2Vu489loIQ+N59ABZOLldpbkPM7VJIOnnfg+/GMvaEor2YCYElDGXx4BdRmSfOyzFF2Wqz5iTxMbdCo3iZbPQqbFTdMOX7Hy3nT8vUOhCLo+Dkgb7B01nPnm7crmC+TOgi4iDLp4nCqx5OSiG5gd/m54gZHe6Cymwj+DbW303KcvpGBrk0xr2sGUkQiu4vxNz+uW09EyMNCp5cg2AUWG4w6ykTHXUeDDQG232C5K7/tTt8Z09Kp9v71PkwH7hmZUrjAERGvF29zucdTVRmzr++JMH82Sk0chAi5UFs/lbVcN/birI7OVl6okyO3+bKWMCuhje1huOgeZzSk5xKFrgJ1v69TyD1mOa5wYx6IskbWSrFW/sqrhURqpSlfdWVCZiaOHLb/UIgQ0s1xlHyZ0/YOBQFz1VCgKH217ALijV3FOr+q00761SKNFc/IhZLNtVhHhE7lutAjVqyme7RHKd4fjFOD6oREyDYXHULmDGPRTmlFSxwE4+n3N9AInajQLH82CGWO1nV3u7qSY5vSbuzQIxCr8OKQfW8AzTdNjUoEtU+ojprLZ4V4r1dr01eLqXSVJ12Yq9Sm/Ivu1SZkHJl9oIxNjWSbRRMoYIVH3yVv1HyGGajcmKuzIfORuBZm" diff --git a/.github/workflows/CI.yml b/.github/workflows/CI.yml index c7df47bf..ec04c117 100644 --- a/.github/workflows/CI.yml +++ b/.github/workflows/CI.yml @@ -4,12 +4,12 @@ on: branches: - main paths-ignore: - - 'docs/**' + - "docs/**" push: branches: - main paths-ignore: - - 'docs/**' + - "docs/**" concurrency: # Skip intermediate builds: always. # Cancel intermediate builds: only if it is a pull request build. @@ -22,7 +22,7 @@ jobs: fail-fast: false matrix: version: - - '1' + - "1" steps: - uses: actions/checkout@v4 - uses: julia-actions/setup-julia@v2 @@ -41,10 +41,7 @@ jobs: - uses: julia-actions/julia-buildpkg@v1 - uses: julia-actions/julia-runtest@v1 env: - GROUP: "CPU" - JULIA_NUM_THREADS: 12 - RETESTITEMS_NWORKERS: 4 - RETESTITEMS_NWORKER_THREADS: 2 + BACKEND_GROUP: "CPU" - uses: julia-actions/julia-processcoverage@v1 with: directories: src,ext diff --git a/LocalPreferences.toml b/LocalPreferences.toml deleted file mode 100644 index 4270267a..00000000 --- a/LocalPreferences.toml +++ /dev/null @@ -1,2 +0,0 @@ -[LuxTestUtils] -target_modules = ["DeepEquilibriumNetworks", "Lux", "LuxCore", "LuxLib"] diff --git a/Project.toml b/Project.toml index 8abdbed5..f9aca992 100644 --- a/Project.toml +++ b/Project.toml @@ -14,7 +14,6 @@ FastClosures = "9aa1b823-49e4-5ca5-8b0f-3971ec8bab6a" Lux = "b2108857-7c20-44ae-9111-449ecde12c47" LuxCore = "bb33d45b-7691-41d6-9220-0943567d0623" NNlib = "872c559c-99b0-510c-b3b7-b6c96a88d5cd" -PrecompileTools = "aea7be01-6a6a-4083-8856-8a6e6704d82a" Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462" Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" @@ -40,23 +39,26 @@ ExplicitImports = "1.6.0" FastClosures = "0.3" ForwardDiff = "0.10.36" Functors = "0.4.10" +GPUArraysCore = "0.1.6" +Hwloc = "3" +InteractiveUtils = "<0.0.1, 1" LinearSolve = "2.21.2" Lux = "0.5.56" -LuxCUDA = "0.3.2" LuxCore = "0.1.14" -LuxTestUtils = "0.1.15" +LuxTestUtils = "1" +MLDataDevices = "1" NLsolve = "4.5.1" NNlib = "0.9.17" NonlinearSolve = "3.10.0" OrdinaryDiffEq = "6.74.1" -PrecompileTools = "1" +Pkg = "1.10" Random = "1.10" ReTestItems = "1.23.1" SciMLBase = "2" SciMLSensitivity = "7.43" StableRNGs = "1.0.2" Statistics = "1.10" -SteadyStateDiffEq = "2" +SteadyStateDiffEq = "2.3.2" Test = "1.10" Zygote = "0.6.69" julia = "1.10" @@ -67,11 +69,15 @@ Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4" ExplicitImports = "7d51a73a-1435-4ff3-83d9-f097790105c7" ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" Functors = "d9f16b24-f501-4c13-a1f2-28368ffc5196" -LuxCUDA = "d0bbae9a-e099-4d5b-a835-1c6931763bda" +GPUArraysCore = "46192b85-c4d5-4398-a991-12ede77f4527" +Hwloc = "0e44f5e4-bd66-52a0-8798-143a42290a1d" +InteractiveUtils = "b77e0a4c-d291-57a0-90e8-8db25a27a240" LuxTestUtils = "ac9de150-d08f-4546-94fb-7472b5760531" +MLDataDevices = "7e8f7934-dd98-4c1a-8fe8-92b47a384d40" NLsolve = "2774e3e8-f4cf-5e23-947b-6d7e65073b56" NonlinearSolve = "8913a72c-1f9b-4ce2-8d82-65094dcecaec" OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" +Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" ReTestItems = "817f1d60-ba6b-4fd5-9520-3cf149f6a823" SciMLSensitivity = "1ed8b502-d754-442c-8d5d-10ac956f44a1" StableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3" @@ -79,4 +85,4 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" [targets] -test = ["Aqua", "Documenter", "ExplicitImports", "ForwardDiff", "Functors", "LuxCUDA", "LuxTestUtils", "NLsolve", "NonlinearSolve", "OrdinaryDiffEq", "ReTestItems", "SciMLSensitivity", "StableRNGs", "Test", "Zygote"] +test = ["Aqua", "Documenter", "ExplicitImports", "ForwardDiff", "Functors", "GPUArraysCore", "Hwloc", "InteractiveUtils", "LuxTestUtils", "MLDataDevices", "NLsolve", "NonlinearSolve", "OrdinaryDiffEq", "Pkg", "ReTestItems", "SciMLSensitivity", "StableRNGs", "Test", "Zygote"] diff --git a/ext/DeepEquilibriumNetworksSciMLSensitivityExt.jl b/ext/DeepEquilibriumNetworksSciMLSensitivityExt.jl index fdc36591..b76f5749 100644 --- a/ext/DeepEquilibriumNetworksSciMLSensitivityExt.jl +++ b/ext/DeepEquilibriumNetworksSciMLSensitivityExt.jl @@ -15,6 +15,6 @@ using DeepEquilibriumNetworks: DEQs linsolve_kwargs = (; maxiters=10, abstol=1e-3, reltol=1e-3) return SteadyStateAdjoint(; linsolve, linsolve_kwargs, autojacvec=ZygoteVJP()) end -@inline DEQs.__default_sensealg(prob::ODEProblem) = GaussAdjoint(; autojacvec=ZygoteVJP()) +@inline DEQs.__default_sensealg(::ODEProblem) = GaussAdjoint(; autojacvec=ZygoteVJP()) end diff --git a/src/utils.jl b/src/utils.jl index 26c942a7..5c7e23b3 100644 --- a/src/utils.jl +++ b/src/utils.jl @@ -98,8 +98,7 @@ CRC.@non_differentiable __gaussian_like(::Any...) @inline __tupleify(x) = @closure(u->(u, x)) # Jacobian Stabilization -## Don't remove `ad`. See https://github.com/ericphanson/ExplicitImports.jl/issues/33 -function __estimate_jacobian_trace(ad::AutoFiniteDiff, model::StatefulLuxLayer, z, x, rng) +function __estimate_jacobian_trace(::AutoFiniteDiff, model::StatefulLuxLayer, z, x, rng) __f = @closure u -> model((u, x)) res = zero(eltype(x)) ϵ = cbrt(eps(typeof(res))) diff --git a/test/layers_tests.jl b/test/layers_tests.jl index 4a69127d..b2d81b94 100644 --- a/test/layers_tests.jl +++ b/test/layers_tests.jl @@ -17,14 +17,14 @@ export loss_function, SOLVERS end -@testitem "DEQ" setup=[SharedTestSetup, LayersTestSetup] timeout=10000 begin +@testitem "DEQ" setup=[SharedTestSetup, LayersTestSetup] begin using ADTypes, Lux, NonlinearSolve, OrdinaryDiffEq, SciMLSensitivity, Zygote - rng = __get_prng(0) + rng = StableRNG(0) - base_models = [Parallel(+, __get_dense_layer(2 => 2), __get_dense_layer(2 => 2)), - Parallel(+, __get_conv_layer((1, 1), 1 => 1), __get_conv_layer((1, 1), 1 => 1))] - init_models = [__get_dense_layer(2 => 2), __get_conv_layer((1, 1), 1 => 1)] + base_models = [Parallel(+, dense_layer(2 => 2), dense_layer(2 => 2)), + Parallel(+, conv_layer((1, 1), 1 => 1), conv_layer((1, 1), 1 => 1))] + init_models = [dense_layer(2 => 2), conv_layer((1, 1), 1 => 1)] x_sizes = [(2, 14), (3, 3, 1, 3)] model_type = (:deq, :skipdeq, :skipregdeq) @@ -34,7 +34,7 @@ end jacobian_regularizations = ongpu ? _jacobian_regularizations[1:(end - 1)] : _jacobian_regularizations - @testset "Solver: $(__nameof(solver)) | Model Type: $(mtype) | Jac. Reg: $(jacobian_regularization)" for solver in SOLVERS, + @testset "Solver: $(nameof(typeof(solver))) | Model Type: $(mtype) | Jac. Reg: $(jacobian_regularization)" for solver in SOLVERS, mtype in model_type, jacobian_regularization in jacobian_regularizations @@ -55,8 +55,7 @@ end x = randn(rng, Float32, x_size...) |> dev z, st = model(x, ps, st) - opt_broken = solver isa SimpleLimitedMemoryBroyden - @jet model(x, ps, st) opt_broken=opt_broken + @jet model(x, ps, st) opt_broken=true @test all(isfinite, z) @test size(z) == size(x) @@ -65,8 +64,8 @@ end _, gs_x, gs_ps, _ = Zygote.gradient(loss_function, model, x, ps, st) - @test __is_finite_gradient(gs_x) - @test __is_finite_gradient(gs_ps) + @test is_finite_gradient(gs_x) + @test is_finite_gradient(gs_ps) ps, st = Lux.setup(rng, model) |> dev st = Lux.update_state(st, :fixed_depth, Val(10)) @@ -82,28 +81,28 @@ end _, gs_x, gs_ps, _ = Zygote.gradient(loss_function, model, x, ps, st) - @test __is_finite_gradient(gs_x) - @test __is_finite_gradient(gs_ps) + @test is_finite_gradient(gs_x) + @test is_finite_gradient(gs_ps) end end end end -@testitem "Multiscale DEQ" setup=[SharedTestSetup, LayersTestSetup] timeout=10000 begin +@testitem "Multiscale DEQ" setup=[SharedTestSetup, LayersTestSetup] begin using ADTypes, Lux, NonlinearSolve, OrdinaryDiffEq, SciMLSensitivity, Zygote - rng = __get_prng(0) + rng = StableRNG(0) - main_layers = [(Parallel(+, __get_dense_layer(4 => 4), __get_dense_layer(4 => 4)), - __get_dense_layer(3 => 3), __get_dense_layer(2 => 2), __get_dense_layer(1 => 1))] + main_layers = [(Parallel(+, dense_layer(4 => 4), dense_layer(4 => 4)), + dense_layer(3 => 3), dense_layer(2 => 2), dense_layer(1 => 1))] - mapping_layers = [[NoOpLayer() __get_dense_layer(4 => 3) __get_dense_layer(4 => 2) __get_dense_layer(4 => 1); - __get_dense_layer(3 => 4) NoOpLayer() __get_dense_layer(3 => 2) __get_dense_layer(3 => 1); - __get_dense_layer(2 => 4) __get_dense_layer(2 => 3) NoOpLayer() __get_dense_layer(2 => 1); - __get_dense_layer(1 => 4) __get_dense_layer(1 => 3) __get_dense_layer(1 => 2) NoOpLayer()]] + mapping_layers = [[NoOpLayer() dense_layer(4 => 3) dense_layer(4 => 2) dense_layer(4 => 1); + dense_layer(3 => 4) NoOpLayer() dense_layer(3 => 2) dense_layer(3 => 1); + dense_layer(2 => 4) dense_layer(2 => 3) NoOpLayer() dense_layer(2 => 1); + dense_layer(1 => 4) dense_layer(1 => 3) dense_layer(1 => 2) NoOpLayer()]] - init_layers = [(__get_dense_layer(4 => 4), __get_dense_layer(4 => 3), - __get_dense_layer(4 => 2), __get_dense_layer(4 => 1))] + init_layers = [( + dense_layer(4 => 4), dense_layer(4 => 3), dense_layer(4 => 2), dense_layer(4 => 1))] x_sizes = [(4, 3)] scales = [((4,), (3,), (2,), (1,))] @@ -112,7 +111,7 @@ end jacobian_regularizations = (nothing,) @testset "$mode" for (mode, aType, dev, ongpu) in MODES - @testset "Solver: $(__nameof(solver))" for solver in SOLVERS, + @testset "Solver: $(nameof(typeof(solver)))" for solver in SOLVERS, mtype in model_type, jacobian_regularization in jacobian_regularizations @@ -141,8 +140,8 @@ end z, st = model(x, ps, st) z_ = DEQs.__flatten_vcat(z) - opt_broken = solver isa SimpleLimitedMemoryBroyden - @jet model(x, ps, st) opt_broken=opt_broken # Broken due to nfe dynamic dispatch + opt_broken = mtype !== :node + @jet model(x, ps, st) opt_broken=opt_broken @test all(isfinite, z_) @test size(z_) == (sum(prod, scale), size(x, ndims(x))) @@ -153,8 +152,8 @@ end _, gs_x, gs_ps, _ = Zygote.gradient(loss_function, model, x, ps, st) - @test __is_finite_gradient(gs_x) - @test __is_finite_gradient(gs_ps) + @test is_finite_gradient(gs_x) + @test is_finite_gradient(gs_ps) ps, st = Lux.setup(rng, model) |> dev st = Lux.update_state(st, :fixed_depth, Val(10)) @@ -172,8 +171,8 @@ end _, gs_x, gs_ps, _ = Zygote.gradient(loss_function, model, x, ps, st) - @test __is_finite_gradient(gs_x) - @test __is_finite_gradient(gs_ps) + @test is_finite_gradient(gs_x) + @test is_finite_gradient(gs_ps) end end end diff --git a/test/runtests.jl b/test/runtests.jl index 8ba7978a..6ac0ba52 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -1,3 +1,27 @@ -using ReTestItems +using ReTestItems, Pkg, InteractiveUtils, Hwloc -ReTestItems.runtests(@__DIR__) +@info sprint(versioninfo) + +const BACKEND_GROUP = lowercase(get(ENV, "BACKEND_GROUP", "all")) +const EXTRA_PKGS = String[] + +(BACKEND_GROUP == "all" || BACKEND_GROUP == "cuda") && push!(EXTRA_PKGS, "LuxCUDA") + +if !isempty(EXTRA_PKGS) + @info "Installing Extra Packages for testing" EXTRA_PKGS=EXTRA_PKGS + Pkg.add(EXTRA_PKGS) + Pkg.update() + Base.retry_load_extensions() + Pkg.instantiate() +end + +using DeepEquilibriumNetworks + +const RETESTITEMS_NWORKERS = parse( + Int, get(ENV, "RETESTITEMS_NWORKERS", string(min(Hwloc.num_physical_cores(), 16)))) +const RETESTITEMS_NWORKER_THREADS = parse(Int, + get(ENV, "RETESTITEMS_NWORKER_THREADS", + string(max(Hwloc.num_virtual_cores() ÷ RETESTITEMS_NWORKERS, 1)))) + +ReTestItems.runtests(DeepEquilibriumNetworks; nworkers=RETESTITEMS_NWORKERS, + nworker_threads=RETESTITEMS_NWORKER_THREADS, testitem_timeout=12000) diff --git a/test/shared_testsetup.jl b/test/shared_testsetup.jl index a0a321a6..0ad266d2 100644 --- a/test/shared_testsetup.jl +++ b/test/shared_testsetup.jl @@ -1,55 +1,47 @@ @testsetup module SharedTestSetup using DeepEquilibriumNetworks, Functors, Lux, Random, StableRNGs, Zygote, ForwardDiff -import LuxTestUtils: @jet -using LuxCUDA +using LuxTestUtils +using MLDataDevices, GPUArraysCore -CUDA.allowscalar(false) +LuxTestUtils.jet_target_modules!(["DeepEquilibriumNetworks", "Lux", "LuxLib"]) -__nameof(::X) where {X} = nameof(X) +const BACKEND_GROUP = lowercase(get(ENV, "BACKEND_GROUP", "all")) -__get_prng(seed::Int) = StableRNG(seed) +if BACKEND_GROUP == "all" || BACKEND_GROUP == "cuda" + using LuxCUDA +end + +GPUArraysCore.allowscalar(false) -__is_finite_gradient(x::AbstractArray) = all(isfinite, x) +cpu_testing() = BACKEND_GROUP == "all" || BACKEND_GROUP == "cpu" +function cuda_testing() + return (BACKEND_GROUP == "all" || BACKEND_GROUP == "cuda") && + MLDataDevices.functional(CUDADevice) +end -function __is_finite_gradient(gs::NamedTuple) - gradient_is_finite = Ref(true) - function __is_gradient_finite(x) - !isnothing(x) && !all(isfinite, x) && (gradient_is_finite[] = false) - return x - end - fmap(__is_gradient_finite, gs) - return gradient_is_finite[] +const MODES = begin + modes = [] + cpu_testing() && push!(modes, ("cpu", Array, CPUDevice(), false)) + cuda_testing() && push!(modes, ("cuda", CuArray, CUDADevice(), true)) + modes end -function __get_dense_layer(args...; kwargs...) +is_finite_gradient(x::AbstractArray) = all(isfinite, x) +is_finite_gradient(::Nothing) = true +is_finite_gradient(gs) = all(is_finite_gradient, fleaves(gs)) + +function dense_layer(args...; kwargs...) init_weight(rng::AbstractRNG, dims...) = randn(rng, Float32, dims) .* 0.001f0 return Dense(args...; init_weight, use_bias=false, kwargs...) end -function __get_conv_layer(args...; kwargs...) +function conv_layer(args...; kwargs...) init_weight(rng::AbstractRNG, dims...) = randn(rng, Float32, dims) .* 0.001f0 return Conv(args...; init_weight, use_bias=false, kwargs...) end -const GROUP = get(ENV, "GROUP", "All") - -cpu_testing() = GROUP == "All" || GROUP == "CPU" -cuda_testing() = LuxCUDA.functional() && (GROUP == "All" || GROUP == "CUDA") - -const MODES = begin - cpu_mode = ("CPU", Array, LuxCPUDevice(), false) - cuda_mode = ("CUDA", CuArray, LuxCUDADevice(), true) - - modes = [] - cpu_testing() && push!(modes, cpu_mode) - cuda_testing() && push!(modes, cuda_mode) - - modes -end - export Lux, LuxCore, LuxLib -export MODES, __get_dense_layer, __get_conv_layer, __is_finite_gradient, __get_prng, - __nameof, @jet +export MODES, dense_layer, conv_layer, is_finite_gradient, StableRNG, @jet, test_gradients end