Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n?
Example: Input: 3 Output: 5 Explanation:
Given n = 3, there are a total of 5 unique BST's:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
总结:
给定一个数n,n的结果为当root分别为1~n组成的所有结果。如果x属于区间[1,n]则 x为root那么1~x-1组成的bst的数量left 乘以 x+1到n组成的bst的数量right 即为x为root有的bst数量。
有两个区间分别为[x1,x2],[y1,y2]如果x2-x1==y2-y1那么两个区间组成的bst数量相同。
func numTrees(n int) int {
mp := make(map[int]int, 0)
mp[1] = 1
left , right := 0, 0
for i := 2; i <= n; i++ {
count := 0
for j := 1; j <= i; j++ {
left, right = mp[j-1], mp[i-j]
if left == 0 {
left = 1
}
if right == 0 {
right = 1
}
count += left * right
}
mp[i] = count
}
return mp[n]
}