Skip to content

Latest commit

 

History

History
205 lines (167 loc) · 5.85 KB

README.md

File metadata and controls

205 lines (167 loc) · 5.85 KB

REST-DB-API

This is a plugin to be used with apache-superset, for importing data via REST APIs.

It builds on top of shillelagh's generic json adapter.

To get started, just do:

pip install rest-db-api

Motivation

  1. Generic json adapter did not support request bodies and headers.
  2. Independence to specify http/https
  3. rest dialect enables this adapter to be used with apache superset.
  4. The dialect enables us to set a base URL, and query multiple endpoints with the same 'connection'.

Examples

GET requests

Querying weather api

Lets assume I am querying for 3 days weather forecast for Bangalore. The response gives the results by hour.

https://api.weatherapi.com/v1/forecast.json?key={{your_key}}&q=Bangalore&days=3&aqi=no&alerts=no

You can get a free key by creating an account there.

You can refer this file to check the response structure. We can query this with rest-db-api:

from sqlalchemy import create_engine  
from rest_db_api.utils import get_virtual_table  
  
engine = create_engine("rest://api.weatherapi.com?ishttps=1")  
  
endpoint = '/v1/forecast.json'  
params = {  
    'key': 'your_key',  
    'q': 'Bangalore',  
    'days': 5  
}  
jsonpath = "$.forecast.forecastday[*]"  
virtual_table = get_virtual_table(endpoint=endpoint,  
                                  params=params,  
                                  jsonpath=jsonpath)  
connection = engine.connect()  
for i in connection.execute(f'SELECT * FROM "{virtual_table}"'):  
    print(i)

The response should return an array of objects/primitives. If not, we need to specify where in the response the array is (using jsonpath). In this case that is at $.forecast.forecastday[*]

As Shillelagh's Adapter class uses in memory storage - sqllite , we can query the data using sqllite syntax.

query = f"""  
SELECT  
  date,
  json_extract(day, "$.maxtemp_c") as max_temp_celsius,  
  json_extract(hour, "$[6].temp_c") as six_am_celsius,  
  json_extract(hour, "$[6].will_it_rain") as will_it_rain
FROM  
  "{virtual_table}"  
"""  
for i in connection.execute(query):  
    print(i)

POST request with headers and request body

Consider this sample request

curl --location -g --request POST 'https://some.api.com/some/api/path?a=60&c=someQuery&b=-50#$[*]' \
--header 'Content-Type: application/json' \
--header 'IAM_ID: satvik' \
--header 'ENVIRONMENT: staging:1.5.3' \
--header 'NAME: MY-REST-SERVICE' \
--data-raw '{
    "name": "satvik",
    "interests": [
        {
            "name": "badminton",
            "category": "sports",
            "stats": {
                "racket": "intermediate",
                "shuttle": "yonex mavis 500"
            }
        },
        {
            "name": "programming",
            "category": "computers",
            "stats": {
                "laptop": "yw",
                "mouse": "5D ergonomic",
                "keyboard": "broken"
            }
        }
    ]
}'

To query this with db-api, follow the snippet:

from sqlalchemy import create_engine  
from rest_db_api.utils import get_virtual_table
  
engine = create_engine("rest://some.api.com?ishttps=1")

endpoint = '/some/api/path'

params = {
	"a": 60,
	"b": -50,
	"c": "someQuery"
}

headers = {  
    'Content-Type': 'application/json',  
    'IAM_ID': 'satvik',  
    'ENVIRONMENT': 'staging:1.5.3',  
    'NAME': 'MY-REST-SERVICE',  
}  
  
body = {  
  "name": "satvik",  
  "interests": [  
    {  
      "name": "badminton",  
      "category": "sports",  
      "stats": { "racket": "intermediate", "shuttle": "yonex mavis 500" }  
    },  
    {  
      "name": "programming",  
      "category": "computers",  
      "stats": {  
        "laptop": "mac book pro",  
        "mouse": "5D ergonomic",  
        "keyboard": "broken"  
      }  
    }  
  ]  
}  

jsonpath = "#$[*]" # set this according to your response  

virtual_table = get_virtual_table(endpoint=endpoint,  
								  params=params,
                                  headers=headers,  
                                  body=body,  
                                  jsonpath=jsonpath)  
  
for i in connection.execute(f'SELECT * FROM "{virtual_table}"'):  
    print(i)

Usage with apache-superset

  1. Go to Connect database and add database

    ss1.png

    ss2.png

  2. Select Shillelagh

    ss3.png

  3. add the connection string with rest:// prefix eg: rest://api.weatherapi.com?ishttps=1 ss4.png

  4. Gice your connection a name: eg rest-weather-api

  5. Click test connection and then add

  6. Go to SQL lab and select rest-weather-api from database.

    ss5.png

  7. You can leave schema empty and query directly!!

    ss6.png

  8. save the result by using Save dataset

    ss7.png

Query is:

SELECT date, 
      json_extract(day, "$.maxtemp_c") as max_temp_celsius,
      json_extract(hour, "$[6].temp_c") as six_am_celsius,
      json_extract(hour, "$[6].will_it_rain") as will_it_rain
FROM "/v1/forecast.json?key={your_key}&q=Bangalore&days=5#$.forecast.forecastday[*]";

Tables and schema is empty, because there's no concept for tables in REST APIs. It returns a default message. That message is configured in rest_api_dialect.py

Getting the virtual table

In superset's SQL lab, we're directly using

/v1/forecast.json?key={your_key}&q=Bangalore&days=5#$.forecast.forecastday[*]

To get the similar virtual table address for your endpoint (it may have headers or even body), use the utility rest_db_api.utils.get_virtual_table and pass in your configs.

  • POST requests (request body)
  • headers
  • adding write support to adapter (for PUT/DELETE requests)