forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_constraint_manager.cc
731 lines (651 loc) · 27.4 KB
/
linear_constraint_manager.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/linear_constraint_manager.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include <utility>
#include "absl/container/flat_hash_set.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/linear_constraint.h"
namespace operations_research {
namespace sat {
namespace {
const LinearConstraintManager::ConstraintIndex kInvalidConstraintIndex(-1);
size_t ComputeHashOfTerms(const LinearConstraint& ct) {
DCHECK(std::is_sorted(ct.vars.begin(), ct.vars.end()));
size_t hash = 0;
const int num_terms = ct.vars.size();
for (int i = 0; i < num_terms; ++i) {
hash = util_hash::Hash(ct.vars[i].value(), hash);
hash = util_hash::Hash(ct.coeffs[i].value(), hash);
}
return hash;
}
} // namespace
LinearConstraintManager::~LinearConstraintManager() {
if (num_merged_constraints_ > 0) {
VLOG(2) << "num_merged_constraints: " << num_merged_constraints_;
}
if (num_shortened_constraints_ > 0) {
VLOG(2) << "num_shortened_constraints: " << num_shortened_constraints_;
}
if (num_splitted_constraints_ > 0) {
VLOG(2) << "num_splitted_constraints: " << num_splitted_constraints_;
}
if (num_coeff_strenghtening_ > 0) {
VLOG(2) << "num_coeff_strenghtening: " << num_coeff_strenghtening_;
}
if (sat_parameters_.log_search_progress() && num_cuts_ > 0) {
LOG(INFO) << "Total cuts added: " << num_cuts_ << " (out of "
<< num_add_cut_calls_ << " calls) worker: '" << model_->Name()
<< "'";
LOG(INFO) << "Num simplifications: " << num_simplifications_;
for (const auto& entry : type_to_num_cuts_) {
LOG(INFO) << "Added " << entry.second << " cuts of type '" << entry.first
<< "'.";
}
}
}
void LinearConstraintManager::RescaleActiveCounts(const double scaling_factor) {
for (ConstraintIndex i(0); i < constraint_infos_.size(); ++i) {
constraint_infos_[i].active_count *= scaling_factor;
}
constraint_active_count_increase_ *= scaling_factor;
VLOG(2) << "Rescaled active counts by " << scaling_factor;
}
bool LinearConstraintManager::MaybeRemoveSomeInactiveConstraints(
glop::BasisState* solution_state) {
if (solution_state->IsEmpty()) return false; // Mainly to simplify tests.
const glop::RowIndex num_rows(lp_constraints_.size());
const glop::ColIndex num_cols =
solution_state->statuses.size() - RowToColIndex(num_rows);
int new_size = 0;
for (int i = 0; i < num_rows; ++i) {
const ConstraintIndex constraint_index = lp_constraints_[i];
// Constraints that are not tight in the current solution have a basic
// status. We remove the ones that have been inactive in the last recent
// solves.
//
// TODO(user): More advanced heuristics might perform better, I didn't do
// a lot of tuning experiments yet.
const glop::VariableStatus row_status =
solution_state->statuses[num_cols + glop::ColIndex(i)];
if (row_status == glop::VariableStatus::BASIC) {
constraint_infos_[constraint_index].inactive_count++;
if (constraint_infos_[constraint_index].inactive_count >
sat_parameters_.max_consecutive_inactive_count()) {
constraint_infos_[constraint_index].is_in_lp = false;
continue; // Remove it.
}
} else {
// Only count consecutive inactivities.
constraint_infos_[constraint_index].inactive_count = 0;
}
lp_constraints_[new_size] = constraint_index;
solution_state->statuses[num_cols + glop::ColIndex(new_size)] = row_status;
new_size++;
}
const int num_removed_constraints = lp_constraints_.size() - new_size;
lp_constraints_.resize(new_size);
solution_state->statuses.resize(num_cols + glop::ColIndex(new_size));
if (num_removed_constraints > 0) {
VLOG(2) << "Removed " << num_removed_constraints << " constraints";
}
return num_removed_constraints > 0;
}
// Because sometimes we split a == constraint in two (>= and <=), it makes sense
// to detect duplicate constraints and merge bounds. This is also relevant if
// we regenerate identical cuts for some reason.
LinearConstraintManager::ConstraintIndex LinearConstraintManager::Add(
LinearConstraint ct, bool* added) {
CHECK(!ct.vars.empty());
DCHECK(NoDuplicateVariable(ct));
SimplifyConstraint(&ct);
DivideByGCD(&ct);
CanonicalizeConstraint(&ct);
DCHECK(DebugCheckConstraint(ct));
// If an identical constraint exists, only updates its bound.
const size_t key = ComputeHashOfTerms(ct);
if (gtl::ContainsKey(equiv_constraints_, key)) {
const ConstraintIndex ct_index = equiv_constraints_[key];
if (constraint_infos_[ct_index].constraint.vars == ct.vars &&
constraint_infos_[ct_index].constraint.coeffs == ct.coeffs) {
if (added != nullptr) *added = false;
if (ct.lb > constraint_infos_[ct_index].constraint.lb) {
if (constraint_infos_[ct_index].is_in_lp) current_lp_is_changed_ = true;
constraint_infos_[ct_index].constraint.lb = ct.lb;
if (added != nullptr) *added = true;
}
if (ct.ub < constraint_infos_[ct_index].constraint.ub) {
if (constraint_infos_[ct_index].is_in_lp) current_lp_is_changed_ = true;
constraint_infos_[ct_index].constraint.ub = ct.ub;
if (added != nullptr) *added = true;
}
++num_merged_constraints_;
return ct_index;
}
}
if (added != nullptr) *added = true;
const ConstraintIndex ct_index(constraint_infos_.size());
ConstraintInfo ct_info;
ct_info.constraint = std::move(ct);
ct_info.l2_norm = ComputeL2Norm(ct_info.constraint);
ct_info.hash = key;
equiv_constraints_[key] = ct_index;
ct_info.active_count = constraint_active_count_increase_;
constraint_infos_.push_back(std::move(ct_info));
return ct_index;
}
void LinearConstraintManager::ComputeObjectiveParallelism(
const ConstraintIndex ct_index) {
CHECK(objective_is_defined_);
// lazy computation of objective norm.
if (!objective_norm_computed_) {
double sum = 0.0;
for (const double coeff : dense_objective_coeffs_) {
sum += coeff * coeff;
}
objective_l2_norm_ = std::sqrt(sum);
objective_norm_computed_ = true;
}
CHECK_GT(objective_l2_norm_, 0.0);
constraint_infos_[ct_index].objective_parallelism_computed = true;
if (constraint_infos_[ct_index].l2_norm == 0.0) {
constraint_infos_[ct_index].objective_parallelism = 0.0;
return;
}
const LinearConstraint& lc = constraint_infos_[ct_index].constraint;
double unscaled_objective_parallelism = 0.0;
for (int i = 0; i < lc.vars.size(); ++i) {
const IntegerVariable var = lc.vars[i];
DCHECK(VariableIsPositive(var));
if (var < dense_objective_coeffs_.size()) {
unscaled_objective_parallelism +=
ToDouble(lc.coeffs[i]) * dense_objective_coeffs_[var];
}
}
const double objective_parallelism =
unscaled_objective_parallelism /
(constraint_infos_[ct_index].l2_norm * objective_l2_norm_);
constraint_infos_[ct_index].objective_parallelism =
std::abs(objective_parallelism);
}
// Same as Add(), but logs some information about the newly added constraint.
// Cuts are also handled slightly differently than normal constraints.
bool LinearConstraintManager::AddCut(
LinearConstraint ct, std::string type_name,
const absl::StrongVector<IntegerVariable, double>& lp_solution,
std::string extra_info) {
++num_add_cut_calls_;
if (ct.vars.empty()) return false;
const double activity = ComputeActivity(ct, lp_solution);
const double violation =
std::max(activity - ToDouble(ct.ub), ToDouble(ct.lb) - activity);
const double l2_norm = ComputeL2Norm(ct);
// Only add cut with sufficient efficacy.
if (violation / l2_norm < 1e-5) return false;
bool added = false;
const ConstraintIndex ct_index = Add(std::move(ct), &added);
// We only mark the constraint as a cut if it is not an update of an already
// existing one.
if (!added) return false;
// TODO(user): Use better heuristic here for detecting good cuts and mark
// them undeletable.
constraint_infos_[ct_index].is_deletable = true;
VLOG(1) << "Cut '" << type_name << "'"
<< " size=" << constraint_infos_[ct_index].constraint.vars.size()
<< " max_magnitude="
<< ComputeInfinityNorm(constraint_infos_[ct_index].constraint)
<< " norm=" << l2_norm << " violation=" << violation
<< " eff=" << violation / l2_norm << " " << extra_info;
num_cuts_++;
num_deletable_constraints_++;
type_to_num_cuts_[type_name]++;
return true;
}
void LinearConstraintManager::PermanentlyRemoveSomeConstraints() {
std::vector<double> deletable_constraint_counts;
for (ConstraintIndex i(0); i < constraint_infos_.size(); ++i) {
if (constraint_infos_[i].is_deletable && !constraint_infos_[i].is_in_lp) {
deletable_constraint_counts.push_back(constraint_infos_[i].active_count);
}
}
if (deletable_constraint_counts.empty()) return;
std::sort(deletable_constraint_counts.begin(),
deletable_constraint_counts.end());
// We will delete the oldest (in the order they where added) cleanup target
// constraints with a count lower or equal to this.
double active_count_threshold = std::numeric_limits<double>::infinity();
if (sat_parameters_.cut_cleanup_target() <
deletable_constraint_counts.size()) {
active_count_threshold =
deletable_constraint_counts[sat_parameters_.cut_cleanup_target()];
}
ConstraintIndex new_size(0);
equiv_constraints_.clear();
absl::StrongVector<ConstraintIndex, ConstraintIndex> index_mapping(
constraint_infos_.size());
int num_deleted_constraints = 0;
for (ConstraintIndex i(0); i < constraint_infos_.size(); ++i) {
if (constraint_infos_[i].is_deletable && !constraint_infos_[i].is_in_lp &&
constraint_infos_[i].active_count <= active_count_threshold &&
num_deleted_constraints < sat_parameters_.cut_cleanup_target()) {
++num_deleted_constraints;
continue;
}
if (i != new_size) {
constraint_infos_[new_size] = std::move(constraint_infos_[i]);
}
index_mapping[i] = new_size;
// Make sure we recompute the hash_map of identical constraints.
equiv_constraints_[constraint_infos_[new_size].hash] = new_size;
new_size++;
}
constraint_infos_.resize(new_size.value());
// Also update lp_constraints_
for (int i = 0; i < lp_constraints_.size(); ++i) {
lp_constraints_[i] = index_mapping[lp_constraints_[i]];
}
if (num_deleted_constraints > 0) {
VLOG(1) << "Constraint manager cleanup: #deleted:"
<< num_deleted_constraints;
}
num_deletable_constraints_ -= num_deleted_constraints;
}
void LinearConstraintManager::SetObjectiveCoefficient(IntegerVariable var,
IntegerValue coeff) {
if (coeff == IntegerValue(0)) return;
objective_is_defined_ = true;
if (!VariableIsPositive(var)) {
var = NegationOf(var);
coeff = -coeff;
}
if (var.value() >= dense_objective_coeffs_.size()) {
dense_objective_coeffs_.resize(var.value() + 1, 0.0);
}
dense_objective_coeffs_[var] = ToDouble(coeff);
}
bool LinearConstraintManager::SimplifyConstraint(LinearConstraint* ct) {
bool term_changed = false;
IntegerValue min_sum(0);
IntegerValue max_sum(0);
IntegerValue max_magnitude(0);
int new_size = 0;
const int num_terms = ct->vars.size();
for (int i = 0; i < num_terms; ++i) {
const IntegerVariable var = ct->vars[i];
const IntegerValue coeff = ct->coeffs[i];
const IntegerValue lb = integer_trail_.LevelZeroLowerBound(var);
const IntegerValue ub = integer_trail_.LevelZeroUpperBound(var);
// For now we do not change ct, but just compute its new_size if we where
// to remove a fixed term.
if (lb == ub) continue;
++new_size;
max_magnitude = std::max(max_magnitude, IntTypeAbs(coeff));
if (coeff > 0.0) {
min_sum += coeff * lb;
max_sum += coeff * ub;
} else {
min_sum += coeff * ub;
max_sum += coeff * lb;
}
}
// Shorten the constraint if needed.
if (new_size < num_terms) {
term_changed = true;
++num_shortened_constraints_;
new_size = 0;
for (int i = 0; i < num_terms; ++i) {
const IntegerVariable var = ct->vars[i];
const IntegerValue coeff = ct->coeffs[i];
const IntegerValue lb = integer_trail_.LevelZeroLowerBound(var);
const IntegerValue ub = integer_trail_.LevelZeroUpperBound(var);
if (lb == ub) {
const IntegerValue rhs_adjust = lb * coeff;
if (ct->lb > kMinIntegerValue) ct->lb -= rhs_adjust;
if (ct->ub < kMaxIntegerValue) ct->ub -= rhs_adjust;
continue;
}
ct->vars[new_size] = var;
ct->coeffs[new_size] = coeff;
++new_size;
}
ct->vars.resize(new_size);
ct->coeffs.resize(new_size);
}
// Relax the bound if needed, note that this doesn't require a change to
// the equiv map.
if (min_sum >= ct->lb) ct->lb = kMinIntegerValue;
if (max_sum <= ct->ub) ct->ub = kMaxIntegerValue;
// Clear constraints that are always true.
// We rely on the deletion code to remove them eventually.
if (ct->lb == kMinIntegerValue && ct->ub == kMaxIntegerValue) {
ct->vars.clear();
ct->coeffs.clear();
return true;
}
// TODO(user): Split constraint in two if it is boxed and there is possible
// reduction?
//
// TODO(user): Make sure there cannot be any overflow. They shouldn't, but
// I am not sure all the generated cuts are safe regarding min/max sum
// computation. We should check this.
if (ct->ub != kMaxIntegerValue && max_magnitude > max_sum - ct->ub) {
if (ct->lb != kMinIntegerValue) {
++num_splitted_constraints_;
} else {
term_changed = true;
++num_coeff_strenghtening_;
const int num_terms = ct->vars.size();
const IntegerValue target = max_sum - ct->ub;
for (int i = 0; i < num_terms; ++i) {
const IntegerValue coeff = ct->coeffs[i];
if (coeff > target) {
const IntegerVariable var = ct->vars[i];
const IntegerValue ub = integer_trail_.LevelZeroUpperBound(var);
ct->coeffs[i] = target;
ct->ub -= (coeff - target) * ub;
} else if (coeff < -target) {
const IntegerVariable var = ct->vars[i];
const IntegerValue lb = integer_trail_.LevelZeroLowerBound(var);
ct->coeffs[i] = -target;
ct->ub += (-target - coeff) * lb;
}
}
}
}
if (ct->lb != kMinIntegerValue && max_magnitude > ct->lb - min_sum) {
if (ct->ub != kMaxIntegerValue) {
++num_splitted_constraints_;
} else {
term_changed = true;
++num_coeff_strenghtening_;
const int num_terms = ct->vars.size();
const IntegerValue target = ct->lb - min_sum;
for (int i = 0; i < num_terms; ++i) {
const IntegerValue coeff = ct->coeffs[i];
if (coeff > target) {
const IntegerVariable var = ct->vars[i];
const IntegerValue lb = integer_trail_.LevelZeroLowerBound(var);
ct->coeffs[i] = target;
ct->lb -= (coeff - target) * lb;
} else if (coeff < -target) {
const IntegerVariable var = ct->vars[i];
const IntegerValue ub = integer_trail_.LevelZeroUpperBound(var);
ct->coeffs[i] = -target;
ct->lb += (-target - coeff) * ub;
}
}
}
}
return term_changed;
}
bool LinearConstraintManager::ChangeLp(
const absl::StrongVector<IntegerVariable, double>& lp_solution,
glop::BasisState* solution_state) {
VLOG(3) << "Enter ChangeLP, scan " << constraint_infos_.size()
<< " constraints";
const double saved_dtime = dtime_;
std::vector<ConstraintIndex> new_constraints;
std::vector<double> new_constraints_efficacies;
std::vector<double> new_constraints_orthogonalities;
const bool simplify_constraints =
integer_trail_.num_level_zero_enqueues() > last_simplification_timestamp_;
last_simplification_timestamp_ = integer_trail_.num_level_zero_enqueues();
// We keep any constraints that is already present, and otherwise, we add the
// ones that are currently not satisfied by at least "tolerance" to the set
// of potential new constraints.
bool rescale_active_count = false;
const double tolerance = 1e-6;
for (ConstraintIndex i(0); i < constraint_infos_.size(); ++i) {
// Inprocessing of the constraint.
if (simplify_constraints &&
SimplifyConstraint(&constraint_infos_[i].constraint)) {
++num_simplifications_;
// Note that the canonicalization shouldn't be needed since the order
// of the variable is not changed by the simplification, and we only
// reduce the coefficients at both end of the spectrum.
DivideByGCD(&constraint_infos_[i].constraint);
DCHECK(DebugCheckConstraint(constraint_infos_[i].constraint));
constraint_infos_[i].objective_parallelism_computed = false;
constraint_infos_[i].l2_norm =
ComputeL2Norm(constraint_infos_[i].constraint);
if (constraint_infos_[i].is_in_lp) current_lp_is_changed_ = true;
equiv_constraints_.erase(constraint_infos_[i].hash);
constraint_infos_[i].hash =
ComputeHashOfTerms(constraint_infos_[i].constraint);
// TODO(user): Because we simplified this constraint, it is possible that
// it is now a duplicate of another one. Merge them.
equiv_constraints_[constraint_infos_[i].hash] = i;
}
if (constraint_infos_[i].is_in_lp) continue;
// ComputeActivity() often represent the bulk of the time spent in
// ChangeLP().
dtime_ += 1.7e-9 *
static_cast<double>(constraint_infos_[i].constraint.vars.size());
const double activity =
ComputeActivity(constraint_infos_[i].constraint, lp_solution);
const double lb_violation =
ToDouble(constraint_infos_[i].constraint.lb) - activity;
const double ub_violation =
activity - ToDouble(constraint_infos_[i].constraint.ub);
const double violation = std::max(lb_violation, ub_violation);
if (violation >= tolerance) {
constraint_infos_[i].inactive_count = 0;
new_constraints.push_back(i);
new_constraints_efficacies.push_back(violation /
constraint_infos_[i].l2_norm);
new_constraints_orthogonalities.push_back(1.0);
if (objective_is_defined_ &&
!constraint_infos_[i].objective_parallelism_computed) {
ComputeObjectiveParallelism(i);
} else if (!objective_is_defined_) {
constraint_infos_[i].objective_parallelism = 0.0;
}
constraint_infos_[i].current_score =
new_constraints_efficacies.back() +
constraint_infos_[i].objective_parallelism;
if (constraint_infos_[i].is_deletable) {
constraint_infos_[i].active_count += constraint_active_count_increase_;
if (constraint_infos_[i].active_count >
sat_parameters_.cut_max_active_count_value()) {
rescale_active_count = true;
}
}
}
}
// Bump activities of active constraints in LP.
if (solution_state != nullptr) {
const glop::RowIndex num_rows(lp_constraints_.size());
const glop::ColIndex num_cols =
solution_state->statuses.size() - RowToColIndex(num_rows);
for (int i = 0; i < num_rows; ++i) {
const ConstraintIndex constraint_index = lp_constraints_[i];
const glop::VariableStatus row_status =
solution_state->statuses[num_cols + glop::ColIndex(i)];
if (row_status != glop::VariableStatus::BASIC &&
constraint_infos_[constraint_index].is_deletable) {
constraint_infos_[constraint_index].active_count +=
constraint_active_count_increase_;
if (constraint_infos_[constraint_index].active_count >
sat_parameters_.cut_max_active_count_value()) {
rescale_active_count = true;
}
}
}
}
if (rescale_active_count) {
CHECK_GT(sat_parameters_.cut_max_active_count_value(), 0.0);
RescaleActiveCounts(1.0 / sat_parameters_.cut_max_active_count_value());
}
// Update the increment counter.
constraint_active_count_increase_ *=
1.0 / sat_parameters_.cut_active_count_decay();
// Remove constraints from the current LP that have been inactive for a while.
// We do that after we computed new_constraints so we do not need to iterate
// over the just deleted constraints.
if (MaybeRemoveSomeInactiveConstraints(solution_state)) {
current_lp_is_changed_ = true;
}
// Note that the algo below is in O(limit * new_constraint). In order to
// limit spending too much time on this, we first sort all the constraints
// with an imprecise score (no orthogonality), then limit the size of the
// vector of constraints to precisely score, then we do the actual scoring.
//
// On problem crossword_opt_grid-19.05_dict-80_sat with linearization_level=2,
// new_constraint.size() > 1.5M.
//
// TODO(user): This blowup factor could be adaptative w.r.t. the constraint
// limit.
const int kBlowupFactor = 4;
int constraint_limit = std::min(sat_parameters_.new_constraints_batch_size(),
static_cast<int>(new_constraints.size()));
if (lp_constraints_.empty()) {
constraint_limit = std::min(1000, static_cast<int>(new_constraints.size()));
}
VLOG(3) << " - size = " << new_constraints.size()
<< ", limit = " << constraint_limit;
std::stable_sort(new_constraints.begin(), new_constraints.end(),
[&](ConstraintIndex a, ConstraintIndex b) {
return constraint_infos_[a].current_score >
constraint_infos_[b].current_score;
});
if (new_constraints.size() > kBlowupFactor * constraint_limit) {
VLOG(3) << "Resize candidate constraints from " << new_constraints.size()
<< " down to " << kBlowupFactor * constraint_limit;
new_constraints.resize(kBlowupFactor * constraint_limit);
}
int num_added = 0;
int num_skipped_checks = 0;
const int kCheckFrequency = 100;
ConstraintIndex last_added_candidate = kInvalidConstraintIndex;
for (int i = 0; i < constraint_limit; ++i) {
// Iterate through all new constraints and select the one with the best
// score.
double best_score = 0.0;
ConstraintIndex best_candidate = kInvalidConstraintIndex;
for (int j = 0; j < new_constraints.size(); ++j) {
// Checks the time limit, and returns if the lp has changed.
if (++num_skipped_checks >= kCheckFrequency) {
if (time_limit_->LimitReached()) return current_lp_is_changed_;
num_skipped_checks = 0;
}
const ConstraintIndex new_constraint = new_constraints[j];
if (constraint_infos_[new_constraint].is_in_lp) continue;
if (last_added_candidate != kInvalidConstraintIndex) {
const double current_orthogonality =
1.0 - (std::abs(ScalarProduct(
constraint_infos_[last_added_candidate].constraint,
constraint_infos_[new_constraint].constraint)) /
(constraint_infos_[last_added_candidate].l2_norm *
constraint_infos_[new_constraint].l2_norm));
new_constraints_orthogonalities[j] =
std::min(new_constraints_orthogonalities[j], current_orthogonality);
}
// NOTE(user): It is safe to not add this constraint as the constraint
// that is almost parallel to this constraint is present in the LP or is
// inactive for a long time and is removed from the LP. In either case,
// this constraint is not adding significant value and is only making the
// LP larger.
if (new_constraints_orthogonalities[j] <
sat_parameters_.min_orthogonality_for_lp_constraints()) {
continue;
}
// TODO(user): Experiment with different weights or different
// functions for computing score.
const double score = new_constraints_orthogonalities[j] +
constraint_infos_[new_constraint].current_score;
CHECK_GE(score, 0.0);
if (score > best_score || best_candidate == kInvalidConstraintIndex) {
best_score = score;
best_candidate = new_constraint;
}
}
if (best_candidate != kInvalidConstraintIndex) {
// Add the best constraint in the LP.
constraint_infos_[best_candidate].is_in_lp = true;
// Note that it is important for LP incremental solving that the old
// constraints stays at the same position in this list (and thus in the
// returned GetLp()).
++num_added;
current_lp_is_changed_ = true;
lp_constraints_.push_back(best_candidate);
last_added_candidate = best_candidate;
}
}
if (num_added > 0) {
// We update the solution sate to match the new LP size.
VLOG(2) << "Added " << num_added << " constraints.";
solution_state->statuses.resize(solution_state->statuses.size() + num_added,
glop::VariableStatus::BASIC);
}
// TODO(user): Instead of comparing num_deletable_constraints with cut
// limit, compare number of deletable constraints not in lp against the limit.
if (num_deletable_constraints_ > sat_parameters_.max_num_cuts()) {
PermanentlyRemoveSomeConstraints();
}
time_limit_->AdvanceDeterministicTime(dtime_ - saved_dtime);
// The LP changed only if we added new constraints or if some constraints
// already inside changed (simplification or tighter bounds).
if (current_lp_is_changed_) {
current_lp_is_changed_ = false;
return true;
}
return false;
}
void LinearConstraintManager::AddAllConstraintsToLp() {
for (ConstraintIndex i(0); i < constraint_infos_.size(); ++i) {
if (constraint_infos_[i].is_in_lp) continue;
constraint_infos_[i].is_in_lp = true;
lp_constraints_.push_back(i);
}
}
bool LinearConstraintManager::DebugCheckConstraint(
const LinearConstraint& cut) {
if (model_->Get<DebugSolution>() == nullptr) return true;
const auto& debug_solution = *(model_->Get<DebugSolution>());
if (debug_solution.empty()) return true;
IntegerValue activity(0);
for (int i = 0; i < cut.vars.size(); ++i) {
const IntegerVariable var = cut.vars[i];
const IntegerValue coeff = cut.coeffs[i];
activity += coeff * debug_solution[var];
}
if (activity > cut.ub || activity < cut.lb) {
LOG(INFO) << "activity " << activity << " not in [" << cut.lb << ","
<< cut.ub << "]";
return false;
}
return true;
}
void TopNCuts::AddCut(
LinearConstraint ct, const std::string& name,
const absl::StrongVector<IntegerVariable, double>& lp_solution) {
if (ct.vars.empty()) return;
const double activity = ComputeActivity(ct, lp_solution);
const double violation =
std::max(activity - ToDouble(ct.ub), ToDouble(ct.lb) - activity);
const double l2_norm = ComputeL2Norm(ct);
cuts_.Add({name, ct}, violation / l2_norm);
}
void TopNCuts::TransferToManager(
const absl::StrongVector<IntegerVariable, double>& lp_solution,
LinearConstraintManager* manager) {
for (const CutCandidate& candidate : cuts_.UnorderedElements()) {
manager->AddCut(candidate.cut, candidate.name, lp_solution);
}
cuts_.Clear();
}
} // namespace sat
} // namespace operations_research