-
Notifications
You must be signed in to change notification settings - Fork 36
/
me_resnet.py
123 lines (110 loc) · 3.86 KB
/
me_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import torch.nn as nn
import MinkowskiEngine as ME
from MinkowskiEngine.modules.resnet_block import BasicBlock, Bottleneck
from mmdet.models import BACKBONES
class ResNetBase(nn.Module):
BLOCK = None
LAYERS = ()
INIT_DIM = 64
PLANES = (64, 128, 256, 512)
def __init__(self, in_channels, n_outs):
super(ResNetBase, self).__init__()
self.n_outs = n_outs
self.inplanes = self.INIT_DIM
self.conv1 = nn.Sequential(
ME.MinkowskiConvolution(
in_channels, self.inplanes, kernel_size=3, stride=2, dimension=3
),
ME.MinkowskiInstanceNorm(self.inplanes),
ME.MinkowskiReLU(inplace=True),
ME.MinkowskiMaxPooling(kernel_size=2, stride=2, dimension=3),
)
self.layer1 = self._make_layer(
self.BLOCK, self.PLANES[0], self.LAYERS[0], stride=2
)
if n_outs > 1:
self.layer2 = self._make_layer(
self.BLOCK, self.PLANES[1], self.LAYERS[1], stride=2
)
if n_outs > 2:
self.layer3 = self._make_layer(
self.BLOCK, self.PLANES[2], self.LAYERS[2], stride=2
)
if n_outs > 3:
self.layer4 = self._make_layer(
self.BLOCK, self.PLANES[3], self.LAYERS[3], stride=2
)
def init_weights(self):
for m in self.modules():
if isinstance(m, ME.MinkowskiConvolution):
ME.utils.kaiming_normal_(m.kernel, mode='fan_out', nonlinearity='relu')
if isinstance(m, ME.MinkowskiBatchNorm):
nn.init.constant_(m.bn.weight, 1)
nn.init.constant_(m.bn.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
ME.MinkowskiConvolution(
self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
dimension=3,
),
ME.MinkowskiBatchNorm(planes * block.expansion),
)
layers = []
layers.append(
block(
self.inplanes,
planes,
stride=stride,
dilation=dilation,
downsample=downsample,
dimension=3,
)
)
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, stride=1, dilation=dilation, dimension=3))
return nn.Sequential(*layers)
def forward(self, x: ME.SparseTensor):
outs = []
x = self.conv1(x)
x = self.layer1(x)
outs.append(x)
if self.n_outs == 1:
return outs
x = self.layer2(x)
outs.append(x)
if self.n_outs == 2:
return outs
x = self.layer3(x)
outs.append(x)
if self.n_outs == 3:
return outs
x = self.layer4(x)
outs.append(x)
return outs
@BACKBONES.register_module()
class MEResNet3D(ResNetBase):
def __init__(self, in_channels, depth, n_outs=4):
if depth == 14:
self.BLOCK = BasicBlock
self.LAYERS = (1, 1, 1, 1)
elif depth == 18:
self.BLOCK = BasicBlock
self.LAYERS = (2, 2, 2, 2)
elif depth == 34:
self.BLOCK = BasicBlock
self.LAYERS = (3, 4, 6, 3)
elif depth == 50:
self.BLOCK = Bottleneck
self.LAYERS = (4, 3, 6, 3)
elif depth == 101:
self.BLOCK = Bottleneck
self.LAYERS = (3, 4, 23, 3)
else:
raise ValueError(f'invalid depth={depth}')
super(MEResNet3D, self).__init__(in_channels, n_outs)