-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclip.py
64 lines (48 loc) · 1.73 KB
/
clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
from torch import nn
from torch.nn import functional as F
from attention import SelfAttention
class CLIPEmbedding(nn.Module):
def __init__(self,n_vocab:int,n_embd: int,n_token:int):
super().__init__()
self.token_embedding = nn.Embedding(n_vocab,n_embd)
self.position_embedding = nn.Parameter(torch.zeros((n_token,n_embd)))
def forward(self,tokens):
x = self.token_embedding(tokens)
x += self.position_embedding
return x
class CLIPLayer(nn.Module):
def __init__(self, n_head:int, n_embd:int):
super().__init__()
self.layernorm_1 = nn.LayerNorm(n_embd)
self.attention = SelfAttention(n_head,n_embd)
self.layernorm_2 = nn.LayerNorm(n_embd)
self.linear_1 = nn.Linear(n_embd, 4* n_embd)
self.linear_2 = nn.Linear(4*n_embd,n_embd)
def forward(self,x):
residue = x
x = self.layernorm_1(x)
x = self.attention(x, causal_mask=True)
x += residue
residue = x
x = self.layernorm_2(x)
x = self.linear_1(x)
x = x * torch.sigmoid(1.702*x)
x = self.linear_2(x)
x += residue
return x
class CLIP(nn.Module):
def __init__(self):
super().__init__()
self.embedding = CLIPEmbedding(49408,768,77)
self.layers = nn.ModuleList([
CLIPLayer(12,768) for i in range(12)
])
self.layernorm = nn.LayerNorm(768)
def forward(self,tokens: torch.LongTensor)->torch.FloatTensor:
tokens = tokens.type(torch.long)
state = self.embedding(tokens)
for layer in self.layers:
state = layer(state)
output = self.layernorm(state)
return output