-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathapp.py
85 lines (70 loc) · 3.24 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import streamlit as st
import numpy as np
import pickle
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2, preprocess_input
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from tensorflow.keras.preprocessing.sequence import pad_sequences
# Load MobileNetV2 model
mobilenet_model = MobileNetV2(weights="imagenet")
mobilenet_model = Model(inputs=mobilenet_model.inputs, outputs=mobilenet_model.layers[-2].output)
# Load your trained model
model = tf.keras.models.load_model('mymodel.h5')
# Load the tokenizer
with open('tokenizer.pkl', 'rb') as tokenizer_file:
tokenizer = pickle.load(tokenizer_file)
# Set custom web page title
st.set_page_config(page_title="Caption Generator App", page_icon="📷")
# Streamlit app
st.title("Image Caption Generator")
st.markdown(
"Upload an image, and this app will generate a caption for it using a trained LSTM model."
)
# Upload image
uploaded_image = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
# Process uploaded image
if uploaded_image is not None:
st.subheader("Uploaded Image")
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
st.subheader("Generated Caption")
# Display loading spinner while processing
with st.spinner("Generating caption..."):
# Load image
image = load_img(uploaded_image, target_size=(224, 224))
image = img_to_array(image)
image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
image = preprocess_input(image)
# Extract features using VGG16
image_features = mobilenet_model.predict(image, verbose=0)
# Max caption length
max_caption_length = 34
# Define function to get word from index
def get_word_from_index(index, tokenizer):
return next(
(word for word, idx in tokenizer.word_index.items() if idx == index), None
)
# Generate caption using the model
def predict_caption(model, image_features, tokenizer, max_caption_length):
caption = "startseq"
for _ in range(max_caption_length):
sequence = tokenizer.texts_to_sequences([caption])[0]
sequence = pad_sequences([sequence], maxlen=max_caption_length)
yhat = model.predict([image_features, sequence], verbose=0)
predicted_index = np.argmax(yhat)
predicted_word = get_word_from_index(predicted_index, tokenizer)
caption += " " + predicted_word
if predicted_word is None or predicted_word == "endseq":
break
return caption
# Generate caption
generated_caption = predict_caption(model, image_features, tokenizer, max_caption_length)
# Remove startseq and endseq
generated_caption = generated_caption.replace("startseq", "").replace("endseq", "")
# Display the generated caption with custom styling
st.markdown(
f'<div style="border-left: 6px solid #ccc; padding: 5px 20px; margin-top: 20px;">'
f'<p style="font-style: italic;">“{generated_caption}”</p>'
f'</div>',
unsafe_allow_html=True
)