forked from open-mmlab/mmaction2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtsn_r101_1x1x5_50e_mmit_rgb.py
134 lines (133 loc) · 4.06 KB
/
tsn_r101_1x1x5_50e_mmit_rgb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# model settings
model = dict(
type='Recognizer2D',
backbone=dict(
type='ResNet',
pretrained='torchvision://resnet101',
depth=101,
norm_eval=False),
cls_head=dict(
type='TSNHead',
num_classes=313,
in_channels=2048,
spatial_type='avg',
consensus=dict(type='AvgConsensus', dim=1),
loss_cls=dict(type='BCELossWithLogits', loss_weight=160.0),
dropout_ratio=0.5,
init_std=0.01,
multi_class=True,
label_smooth_eps=0))
# model training and testing settings
train_cfg = None
test_cfg = dict(average_clips=None)
# dataset settings
dataset_type = 'RawframeDataset'
data_root = 'data/mmit/rawframes/training'
data_root_val = '/data/mmit/rawframes/validation/'
ann_file_train = 'data/mmit/mmit_train_list_rawframes.txt'
ann_file_val = 'data/mmit/mmit_val_list_rawframes.txt'
ann_file_test = 'data/mmit/mmit_val_list_rawframes.txt'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False)
train_pipeline = [
dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=5),
dict(type='RawFrameDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(
type='MultiScaleCrop',
input_size=224,
scales=(1, 0.875, 0.75, 0.66),
random_crop=False,
max_wh_scale_gap=1),
dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='Flip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs', 'label'])
]
val_pipeline = [
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=5,
test_mode=True),
dict(type='RawFrameDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='CenterCrop', crop_size=224),
dict(type='Flip', flip_ratio=0),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs'])
]
test_pipeline = [
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=5,
test_mode=True),
dict(type='RawFrameDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='MultiGroupCrop', crop_size=256, groups=1),
dict(type='Flip', flip_ratio=0),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs'])
]
data = dict(
videos_per_gpu=16,
workers_per_gpu=4,
train=dict(
type=dataset_type,
ann_file=ann_file_train,
data_prefix=data_root,
pipeline=train_pipeline,
multi_class=True,
num_classes=313),
val=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix=data_root_val,
pipeline=val_pipeline,
multi_class=True,
num_classes=313),
test=dict(
type=dataset_type,
ann_file=ann_file_test,
data_prefix=data_root_val,
pipeline=test_pipeline,
multi_class=True,
num_classes=313))
# optimizer
optimizer = dict(
type='SGD',
constructor='TSMOptimizerConstructor',
paramwise_cfg=dict(fc_lr5=True),
lr=0.01, # this lr is used for 8 gpus
momentum=0.9,
weight_decay=0.0001,
)
optimizer_config = dict(grad_clip=dict(max_norm=20, norm_type=2))
# learning policy
lr_config = dict(policy='step', step=[20, 40])
total_epochs = 50
checkpoint_config = dict(interval=5)
evaluation = dict(interval=5, metrics=['mmit_mean_average_precision'])
# yapf:disable
log_config = dict(
interval=20,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook'),
])
# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/tsn_r101_1x1x5_50e_mmit_rgb/'
load_from = None
resume_from = None
workflow = [('train', 1)]