Skip to content

Latest commit

 

History

History
98 lines (65 loc) · 3.77 KB

README.md

File metadata and controls

98 lines (65 loc) · 3.77 KB

TEST: Text Prototype Aligned Embedding to Activate LLM's Ability for Time Series

Requirements

  • Install Python>=3.8, PyTorch 1.8.1.
  • Numpy (numpy) v1.15.2;
  • Matplotlib (matplotlib) v3.0.0;
  • Orange (Orange) v3.18.0;
  • Pandas (pandas) v1.4.2;
  • Weke (python-weka-wrapper3) v0.1.6 for multivariate time series (requires Oracle JDK 8 or OpenJDK 8);
  • PyTorch (torch) v1.8.1 with CUDA 11.0;
  • Scikit-learn (sklearn) v1.0.2;
  • Scipy (scipy) v1.7.3;
  • Huggingface (transformers) v4.30.1;
  • Absl-py (absl-py) v1.2.0 ;
  • Einops (einops) v0.4.1;
  • H5PY (h5py) v3.7.0;
  • keopscore v2.1
  • opt-einsum v3.3.0
  • pandas v1.4.2
  • pytorch-wavelet
  • PyWavelets v1.4.1
  • scikit-image v0.19.3
  • statsmodels v0.13.2
  • sympy v1.11.1

Datasets

The datasets manipulated in this code can be downloaded on the following locations:

Files

Core

  • datasets data and related methods;
  • encoders folder: implements encoder and its building blocks (dilated convolutions, causal CNN);
  • losses folder: implements the triplet loss in the cases of a training set with all time series of the same length, and a training set with time series of unequal lengths;
  • models folder: implements LLM4TS and its building blocks (encoder + GPT attention + output head);
  • utils folder: utils;
  • main_encoder file: handles learning for encoders (see usage below);
  • main_LLM4TS file: handles learning for LLM4TS. The prerequisite is to have a well trained encoder (see usage below);
  • optimizers file: optimizer methods for training models;
  • options file: input args;
  • running file: methods to train and test models.

Usage

Selecting text prototype

Download LLM from huggingface

To select text prototypes from GPT2

python losses/text_prototype.py --llm_model_dir= path/to/llm/folder/ --prototype_dir path/to/save/prototype/file/ --provide Flase(ramdom) or a text lisr --number_of_prototype 10

Training encoder on the UEA archives

To train a model on the EthanolConcentration dataset from the UEA archive with specific gpu:

python main_encoder.py --data_dir path/to/EthanolConcentration/folder/ --gpu 0

Adding the --load_encoder option allows to load a model from the specified save path.

Setting the --gpu -1 option to use cpu.

Training LLM4TS on the UEA archives (Classification)

To train a model on the EthanolConcentration dataset from the UEA archive with specific gpu:

python main_LLM4TS.py --output_dir experiments --comment "classification from Scratch" --name EthanolConcentration --records_file Classification_records.xls --data_dir path/to/EthanolConcentration/folder/ --data_class tsra --pattern TRAIN --val_pattern TEST --epochs 50 --lr 0.001 --patch_size 8 --stride 8 --optimizer RAdam --d_model 768 --pos_encoding learnable --task classification --key_metric accuracy --gpu 0

Setting the --gpu -1 option to use cpu.

Training encoder on the traffic archives

To train a model on the traffic dataset with specific gpu:

python main_encoder.py --root_path path/to/traffic/folder/ --data_path traffic.csv --model_id traffic --name traffic --data custom --seq_len 512 --output_dir ./experiments_encoder --gpu 0

Training LLM4TS on the traffic archives (Forecasting)

To train a model on the traffic dataset with specific gpu:

python main_LLM4TS.py --root_path path/to/traffic/folder/ --data_path traffic.csv --model_id electricity --name electricity --data custom --seq_len 512 --label_len 48 --pred_len 96 --output_dir ./experiments --gpu 0

Setting the --gpu -1 option to use cpu.