forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
deepspeed_autotp.py
122 lines (108 loc) · 5.28 KB
/
deepspeed_autotp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/TimDettmers/bitsandbytes/blob/0.39.1/bitsandbytes/nn/modules.py
# which is licensed under the MIT license:
#
# MIT License
#
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import os
import torch
from transformers import AutoModelForCausalLM, LlamaTokenizer, AutoTokenizer
import deepspeed
from ipex_llm import optimize_model
import torch
import time
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--local_rank', type=int, default=0, help='this is automatically set when using deepspeed launcher')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
world_size = int(os.getenv("WORLD_SIZE", "1"))
local_rank = int(os.getenv("RANK", "-1")) # RANK is automatically set by CCL distributed backend
if local_rank == -1: # args.local_rank is automatically set by deepspeed subprocess command
local_rank = args.local_rank
# Native Huggingface transformers loading
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map={"": "cpu"},
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
trust_remote_code=True,
use_cache=True
)
# Parallelize model on deepspeed
model = deepspeed.init_inference(
model,
mp_size = world_size,
dtype=torch.float16,
replace_method="auto"
)
# Apply IPEX-LLM INT4 optimizations on transformers
model = optimize_model(model.module.to(f'cpu'), low_bit='sym_int4')
model = model.to(f'cpu:{local_rank}')
print(model)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
# Batch tokenizing
prompt = args.prompt
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(f'cpu:{local_rank}')
# ipex-llm model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict,
use_cache=True)
# start inference
start = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with IPEX-LLM INT4 optimizations
output = model.generate(input_ids,
do_sample=False,
max_new_tokens=args.n_predict)
end = time.time()
if local_rank == 0:
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print('-'*20, 'Output', '-'*20)
print(output_str)
print(f'Inference time: {end - start} s')