-
Notifications
You must be signed in to change notification settings - Fork 0
/
bibliography.bib
310 lines (284 loc) · 10.8 KB
/
bibliography.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
% ATRICLES
@article{maze-generation,
author = {Inoue, Kohei and Urahama, Kiichi},
year = {2008},
month = {09},
pages = {1435-1438},
title = {Halftone Representation with Random Maze Pattern Based on Centroidal
Voronoi Tessellations and Minimum Spanning Trees},
volume = {62},
journal = {The Journal of The Institute of Image Information and Television
Engineers},
doi = {10.3169/itej.62.1435},
}
@article{tsp-christofides,
author = {Christofides, Nicos},
title = {Worst-Case Analysis of a New Heuristic for the Travelling Salesman
Problem},
journal = {Operations Research Forum},
year = {2022},
month = {03},
day = {03},
volume = {3},
number = {1},
pages = {20},
issn = {2662-2556},
doi = {10.1007/s43069-021-00101-z},
url = {https://doi.org/10.1007/s43069-021-00101-z},
}
@inproceedings{mst-segmentation-heuristic,
author = {Wassenberg, Jan and Middelmann, Wolfgang and Sanders, Peter},
editor = {Jiang, Xiaoyi and Petkov, Nicolai},
title = {An Efficient Parallel Algorithm for Graph-Based Image Segmentation},
booktitle = {Computer Analysis of Images and Patterns},
year = {2009},
publisher = {Springer Berlin Heidelberg},
address = {Berlin, Heidelberg},
pages = {1003--1010},
isbn = {978-3-642-03767-2},
}
@article{prim-algorithm,
author = {Prim, R. C.},
journal = {The Bell System Technical Journal},
title = {Shortest connection networks and some generalizations},
year = {1957},
volume = {36},
number = {6},
pages = {1389-1401},
keywords = {},
doi = {10.1002/j.1538-7305.1957.tb01515.x},
}
@article{kruskal-algorithm,
issn = {00029939, 10886826},
url = {http://www.jstor.org/stable/2033241},
author = {Joseph B. Kruskal},
journal = {Proceedings of the American Mathematical Society},
number = {1},
pages = {48--50},
publisher = {American Mathematical Society},
title = {On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem},
urldate = {2024-10-04},
volume = {7},
year = {1956},
}
@article{boruvka-pseudocode,
author = {Vijayan, Darveen and Aziz, Izzatdin},
year = {2022},
month = {12},
pages = {1-14},
title = {Adaptive Hierarchical Density-Based Spatial Clustering Algorithm for
Streaming Applications},
volume = {4},
journal = {Telecom},
doi = {10.3390/telecom4010001},
}
@article{boruvka-ackermann,
author = {Chazelle, Bernard},
title = {A minimum spanning tree algorithm with inverse-Ackermann type
complexity},
year = {2000},
issue_date = {Nov. 2000},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {47},
number = {6},
issn = {0004-5411},
url = {https://doi.org/10.1145/355541.355562},
doi = {10.1145/355541.355562},
journal = {J. ACM},
month = nov,
pages = {1028–1047},
numpages = {20},
keywords = {graphs, matroids, minimum spanning trees},
}
@article{karger-klein-tarjan,
author = {Karger, David R. and Klein, Philip N. and Tarjan, Robert E.},
title = {A randomized linear-time algorithm to find minimum spanning trees},
year = {1995},
issue_date = {March 1995},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {42},
number = {2},
issn = {0004-5411},
url = {https://doi.org/10.1145/201019.201022},
doi = {10.1145/201019.201022},
journal = {J. ACM},
month = mar,
pages = {321–328},
numpages = {8},
keywords = {randomized algorithm, minimum spanning tree, matroid},
}
@inproceedings{boruvka-steps,
author = {Sun Chung and Condon, A.},
booktitle = {Proceedings of International Conference on Parallel Processing},
title = {Parallel implementation of Bouvka's minimum spanning tree algorithm},
year = {1996},
volume = {},
number = {},
pages = {302-308},
keywords = {Costs;Parallel algorithms;Algorithm design and analysis;Load
management;Packaging machines},
doi = {10.1109/IPPS.1996.508073},
}
@inproceedings{generic-he-boruvka,
author = {Mariano, Artur and Proenca, Alberto and Da Silva Sousa, Cristiano},
booktitle = {2015 23rd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing},
title = {A Generic and Highly Efficient Parallel Variant of Boruvka's
Algorithm},
year = {2015},
volume = {},
number = {},
pages = {610-617},
keywords = {Graphics processing units;Arrays;Algorithm design and
analysis;Kernel;Instruction
sets;Color;boruvka;gpu;performance;parallel;minimum spanning tree},
doi = {10.1109/PDP.2015.72},
}
@inproceedings{parprefix,
title = {Parallel Prefix Sum (Scan) with CUDA},
author = {Mark J. Harris},
year = {2011},
url = {https://api.semanticscholar.org/CorpusID:262402762},
}
@incollection{gpu-programming-cuda,
title = {Chapter 6 - GPU programming: CUDA},
editor = {Gerassimos Barlas},
booktitle = {Multicore and GPU Programming (Second Edition)},
publisher = {Morgan Kaufmann},
edition = {Second Edition},
address = {Philadelphia},
pages = {389-581},
year = {2023},
isbn = {978-0-12-814120-5},
doi = {https://doi.org/10.1016/B978-0-12-814120-5.00015-9},
url = {https://www.sciencedirect.com/science/article/pii/B9780128141205000159},
author = {Gerassimos Barlas},
keywords = {CUDA, GPU memory hierarchy, streaming multiprocessor, CUDA
optimization, GPU shared memory, CUDA graphs, coopeative groups,
warp functions, CUDA and MPI},
abstract = {Since GPU computation burst into the scene in the mid 2000s, it
has taken the high-performance computing by storm. GPUs offer a
leap in performance that makes tackling bigger and more difficult
problems feasible. In addition, GPUs offer unparallel power
efficiency in terms of TFlop/Watt, a feature that is becoming all
the more relevant in a world of dwindling natural resources. The
only problem is that GPU architectures are a breed apart from
traditional multicore CPUs. Thousands of cores, coupled with
complex hierarchies of memory subsystems, constitute their
efficient programming a challenge requiring specialized software
platforms. In this chapter we cover one of the most mature and
feature-rich software platforms for this task: NVidia's CUDA.
Additionally, we show through a series of case studies, how CUDA
can be combined with MPI to produce software systems that span
clusters of GPU machines while taking advantage of other
state-of-the-art software tools.},
}
@article{csr-kelly,
author = {Terence Kelly},
title = {Programming Workbench - Compressed Sparse Row Format for Representing
Graphs},
year = {2020},
}
@inproceedings{csr-wheatman,
author = {Wheatman, Brian and Xu, Helen},
booktitle = {2018 IEEE High Performance extreme Computing Conference (HPEC)},
title = {Packed Compressed Sparse Row: A Dynamic Graph Representation},
year = {2018},
volume = {},
number = {},
pages = {1-7},
keywords = {Arrays;Sparse matrices;Benchmark testing;Indexes;Facebook;Computer
science;sparse graphs;sparse matrices;storage formats;compressed
sparse row;packed memory array;dynamic data structures},
doi = {10.1109/HPEC.2018.8547566},
}
@inproceedings{mst-bipartite,
author = {de Alencar Vasconcellos, Jucele França and Cáceres, Edson Norberto
and Mongelli, Henrique and Song, Siang Wun},
booktitle = {2017 International Symposium on Computer Architecture and High
Performance Computing Workshops (SBAC-PADW)},
title = {A Parallel Algorithm for Minimum Spanning Tree on GPU},
year = {2017},
volume = {},
number = {},
pages = {67-72},
keywords = {Bipartite graph;Graphics processing units;Parallel
algorithms;Algorithm design and
analysis;Vegetation;Transforms;minimum spanning tree;parallel
algorithm;GPU},
doi = {10.1109/SBAC-PADW.2017.20},
}
@inproceedings{prim-parallel,
title = {Parallel Minimum Spanning Tree Algorithm},
author = {Xiwen Chen},
year = {2011},
url = {https://api.semanticscholar.org/CorpusID:35108055},
}
@inproceedings{filter-kruskal,
author = {Osipov, Vitaly and Sanders, Peter and Singler, Johannes},
title = {The Filter-Kruskal minimum spanning tree algorithm},
year = {2009},
publisher = {Society for Industrial and Applied Mathematics},
address = {USA},
abstract = {We present Filter-Kruskal -- a simple modification of Kruskal's
algorithm that avoids sorting edges that are "obviously" not in the
MST. For arbitrary graphs with random edge weights Filter-Kruskal
runs in time O(m + n log n log m/n), i.e. in linear time for not
too sparse graphs. Experiments indicate that the algorithm has very
good practical performance over the entire range of edge densities.
An equally simple parallelization seems to be the currently best
practical algorithm on multicore machines.},
booktitle = {Proceedings of the Meeting on Algorithm Engineering \&
Expermiments},
pages = {52–61},
numpages = {10},
location = {New York, New York},
}
@inproceedings{def-occupancy,
author = { Mei, Hengquan and Qu, Huaizhi and Sun, Jingwei and Gao, Yanjie and
Lin, Haoxiang and Sun, Guangzhong },
booktitle = { 2023 IEEE International Conference on Cluster Computing
(CLUSTER) },
title = {{ GPU Occupancy Prediction of Deep Learning Models Using Graph Neural
Network }},
year = {2023},
volume = {},
issn = {},
pages = {318-329},
keywords = {Deep learning;Runtime;Runtime library;Computational
modeling;Semantics;Graphics processing units;Computer architecture},
doi = {10.1109/CLUSTER52292.2023.00034},
url = {https://doi.ieeecomputersociety.org/10.1109/CLUSTER52292.2023.00034},
publisher = {IEEE Computer Society},
address = {Los Alamitos, CA, USA},
month = Nov,
}
@book{clrs,
title = {Introduction to algorithms},
edition = {third},
editor = {MIT press},
author = {Thomas, H., Cormen and Charles, E., Leiserson and Ronald, L., Rivest
and Clifford, stein},
year = {2009},
isbn = {978-0-262-03384-8},
}
% WEB RESOURCES
@misc{mst-applications,
title = {Applications of minimum spanning trees},
url = {https://personal.utdallas.edu/~besp/teaching/mst-applications.pdf},
}
@misc{t4-info,
title = {NVIDIA T4 70W LOW PROFILE PCIe GPU ACCELERATOR},
url = {
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-product-brief.pdf?ncid=no-ncid
},
}
@misc{t4-product-brief,
title = {NVIDIA T4, TENSOR CORE GPU},
url = {
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
},
}