diff --git a/CIP-0050/README.Chinese.md b/CIP-0050/README.Chinese.md new file mode 100644 index 0000000000..8d1c8b69c3 --- /dev/null +++ b/CIP-0050/README.Chinese.md @@ -0,0 +1 @@ + diff --git a/CIP-0050/README.Spanish.md b/CIP-0050/README.Spanish.md new file mode 100644 index 0000000000..2b6afb9f8b --- /dev/null +++ b/CIP-0050/README.Spanish.md @@ -0,0 +1,298 @@ +--- +CIP: 50 +Título: Actualización de la descentralización de Shelley Voltaire +Autor: Michael Liesenfelt +Comments-URI: https://forum.cardano.org/t/cip-shelley-s-basho-voltaire-decentralization-update/97685 +Estado: Borrador +Type: Standards +Created: 2022-04-04 +Licencia: [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode) +Post-History: https://forum.cardano.org/t/cip-shelley-s-basho-voltaire-decentralization-update/97685 https://forum.cardano.org/t/minimum-pool-fees-with-a-brief-mention-of-k-changes/97002/82 +--- + +# Lista de Potenciales Revisores: + +- Aggelos Kiayias +- Aikaterini-Panagiota Stouka +- Charles Hoskinson +- Christia Ovezik +- Colin Edwards +- Duncan Coutts +- Elias Koutsoupias +- Francisco Landino +- Lars Brünjes +- Mark Stopka +- Philipp Kant +- Shawn McMurdo +- Tobias Francee +- Tom Stafford + +# Extracto + +Mejorar la descentralización es absolutamente necesario para la salud y crecimiento del ecosistema de Cardano a largo plazo. La fórmula actual de recompensas ha resultado en un estable pero estancado nivel de descentralización. Con el beneficio de retrospección durante el último año, la intención de (a0, k) no ha resultado en la descentralizada secuela esperado. Este CIP provee las justificaciones, métricas, los métodos y calendario de implementación de un programa mejorado para incrementar la descentralización de la red de Cardano. + +La ecuación de recompensas propuesta retiene la función de k de recompensas disminuyentes basada en “stake”, pero reutiliza el parámetro a0 para imponer las recompensas disminuyentes basadas en la ventaja por pledge. La ecuación propuesta impone una serie de principios para asegurar que todos los accionistas de tamaños dramáticamente diferentes alcancen el mismo rendimiento máximo.La característica del tope en el rendimiento previene la formación de dos clases de accionistas y remueve algunos de los beneficios de la centralización. Las motivaciones económicas de los accionistas más grandes se alinearían con la descentralización, diversificación de recompensas, tolerancia a fallos, y aseguraría la protección sibila de la comunidad entera. + + +# Motivación + +Mejorar la descentralización es absolutamente necesario para la salud y crecimiento del ecosistema de Cardano a largo plazo. La fórmula actual de recompensas ha resultado en un estable pero estancado nivel de descentralización. La motivación es proveer las justificaciones, métricas, los métodos y calendario de implementación de un programa mejorado para incrementar la descentralización de la red de Cardano. + + +K y a0 son parámetros introducidos a la formulación de recompensa diseñada para promover la descentralización. La intención original del parámetro k era que estableciera un ‘soft-cap’ en el tamaño de una pool y por consecuencia fomentar al sistema a que convergiera hacia k pools del mismo tamaño, entregando un retorno equitativo por unidad de stake a todos los delegadores. En el mundo ideal, esto significaría que k pools que son casi igualmente saturados producirían una proporción aproximadamente igual de bloques. Una suposición subyacente era que una entidad correría solamente una pool, y discusiones de diseño sobre estos parámetros han descrito correr múltiples pools como una forma de ataque sibilo. [2]. + +Sin embargo, los parámetros introducidos no han logrado estas metas. Actualmente hay entidades únicas que corren 10,20,30 o hasta 100 pools separadas. Se ha propuesto que el “resultado promedio de descentralización” sea calculado a base de stake sostenido por cada entidad/grupo. “K-efectivo” es por eso utilizado para medir el “resultado promedio de descentralización” y es computado usando Ecuación 1. El Coeficiente Nakamoto es aproximadamente la mitad de k-efectivo redondeado al entero más cercano. K-efectivo provee una resolución cuantificada más alta de descentralización de la red comparada al Coeficiente Nakamoto. + + +La red de Cardano actualmente produce ~21,600 bloques por epoch con ~2,400 grupos produciendo entre 0 a ~3,600 bloques por grupo. Si se promedia, 41 grupos del mismo tamaño crearían cada uno ~527 bloques por epoch. La historia de la descentralización de la red enseñada en Figura 1 ha mejorado de 30.0 en epoch 245 a entre 39.0 y 43.0 después del epoch 260. Esta “descentralización efectiva” o “k-efectivo” no está para nada cerca a la figura de 500 que tiene el actual parámetro k=500 como blanco. Un ejemplo parcial de la tabla usada para computar k-efectivo es enseñado en Figura 2. + +(1) https://iohk.io/en/blog/posts/2020/11/05/parameters-and-decentralization-the-way-ahead/ + +(2) https://iohk.io/en/blog/posts/2018/10/29/preventing-sybil-attacks/ + + (1) + +![Figure 1](k-effective.png) +Figure 1. Historial del k-efectivo desde epoch 245 al presente. + +![Figure 2](k-effective-table.png) +Figure 2. Tabla de cálculo del k-efectivo + +## La intención del (a0,k) + +Citando Aggelos Kiayias, Chief Scientist de IOG: + +> “Central to the mechanism’s behavior are two parameters: k and a0. The k-parameter caps the rewards of pools to 1/k of the total available. The a0 parameter creates a benefit for pledging more stake into a single pool; adding X amount of pledge to a pool increases its rewards additively by up to a0*X. This is not to the detriment of other pools; **any rewards left unclaimed due to insufficient pledging will be returned to the Cardano’s reserves and allocated in the future**.” [3] + +> “Paired with the assessment of stake pools performed by the delegates, **this mechanism provides the right set of constraints for the system to converge to a configuration of k equal size pools with the maximum amount of pledge possible**.” [3] + +El análisis de la fórmula de recompensas actual en [4] igualaba 1 pool a 1 entidad. En el mundo real 1 entidad puede escoger delegar a otra entidad, operar un pool, u operar múltiples pools. Este desprevenido error en el análisis original contribuyó a la proliferación de múltiples pools en contra de incrementos en el parámetro k. + +(3) https://iohk.io/en/blog/posts/2020/11/13/the-general-perspective-on-staking-in-cardano/ + +(4) https://arxiv.org/ftp/arxiv/papers/1807/1807.11218.pdf + +## La Fórmula de Recompensas Actual + +Desde “4.1 Our RSS construction” de “Reward Sharing Schemes for Stake Pools” [5] la ecuación de recompensas actual es: + + (2) + +donde: + +λ’ = min{λ,β}, σ’ = min{σ,β} and β,α son parámetros fijos. + +Una elección natural β = 1/k, donde k es el deseado número de pools. + +y los siguientes son parámetros actuales del protocolo: + +k = 500 + +α = a0 = 0.3 + +El parámetro a0 representa la fracción de las recompensas (R/(1+a0)) que no son pagadas a menos que todo el stake esté en pledge. Un a0 de 0.3 asegura que 1.0-1.0/(1.0+0.3) = 23% de las recompensas totales R serán retenidas de la fracción de pools con bajo pledge y regresadas a la reserva. El efecto de esta fórmula es que el pledge incrementado resulta en retener más de las recompensas disponibles R. Sin embargo, este beneficio no es lineal, sino que es drásticamente perjudicial hacia el límite de saturación. El término σ’ = min{σ,β} impone un limite en recompensas basado en k. Es necesario visualizar el campo de resultados concluyentes de diferentes cantidades de pledges desde 0.00% a 100.0%. La línea de puntos roja “Recompensa Máxima” representa el rendimiento máximo disponible del R con el tamaño actual de la red de stake. + + + +## Si el cobro mínimo es 30 + + + +## Si el cobro mínimo es 0 + + + +## Si a0 se incrementa a 0.5 + + + +## Si a0 se incrementa a 1.0 + + + +## Si a0 se incrementa a 10.0 + + + +## Si a0 se disminuye a 0.2 + + + +## Si a0 se disminuye a 0.1 + + + +## Si a0 se disminuye a 0.0 + + + +## Si a0 se disminuye a 0.0 y mínimo cobro = 0 + + + +## La Realidad de (a0,k) + +La intención de los parámetros (a0, k) no se ha realizado. La gráfica de k-efectivo demuestra que incrementando k de 150 a 500 no resultó en un incremento proporcional de la descentralización. El parámetro k actualmente es 500/41 = 12.2 veces más grande que el efectivo descentralizado k-efectivo. En Epoch 333, 46% del stake total estaba controlado por operadores de multi-pools que no son exchanges. + +Otro determinante importante de la habilidad para que pools pequeños puedan competir con pools más grandes es el cobro mínimo mandatorio el cual es actualmente 340₳. Este cobro mínimo es un porcentaje más alto de las recompensas totales para un pool pequeño que para un pool grande. Esto significa que las ganancias de delegadores para un pool pequeño no exceden 4.0% hasta que la pool tenga al menos 10.0% de saturación (actualmente ~6.8M₳). Esta es una barrera de entrada significante para pools pequeños. + +Billones de ADA están actualmente staked en pools con casi 0 pledge y pledges extremadamente altos. También, un billón de ADA están actualmente como pledge en pools privadas al borde de saturación que están cerradas a delegación de la comunidad. Hay muy pocos pools públicos aceptando delegación de la comunidad con pledge de montos entre 5M₳ a 60M₳ y la gran mayoría de pools públicas tienen menos de 1M₳ en pledge. La siguiente tabla demuestra la distribución de stake como función de ventaja, o “leverage” en inglés, en una escala log(Stake) vs log(Leverage). El mecanismo de incentivo actual del pledge solo se vuelve relevante en un pequeño segmento de esta tabla debajo de un leverage de 10 y encima de un pledge de 10M₳. La Alianza “Single Pool Operator Alliance” (SPA) es un colectivo de ~2,250 pools individuales y operadores de pools con un stake colectivo de 5B₳ con un factor leverage promedio de solo 22. La SPA es el ancla de descentralización en Cardano. + + + +En el diseño original, el parámetro a0 representó la influencia que el pledge del operador tenía en la atractividad de la pool. En otras palabras, más pledge significa que la pool es más atractiva para recibir delegación. Sin embargo, la fórmula de recompensas actual no ha producido este efecto. Ver Figura 2. Con pledge incrementando en proporción del stake total, hay muy poco efecto perceptible en recompensas hasta que vemos altos porcentajes de pledge. Estos altos porcentajes de pledge no son obtenibles excepto por accionistas extremadamente grandes. Además, teniendo un porcentaje de pledge tan alto derrotaría el propósito del staking de la comunidad, ya que la pool ya estaría saturada cuando el beneficio de pledge máximo se obtiene. + +La realidad de los previos 18 meses es que operadores de pools han dividido su pledge por múltiples pools porque es más rentable (cobro mínimo + margen%) que incrementar el pledge en un solo pool. El pequeño incremento en ganancias para pools con menos de 10M₳ en pledge es mucho menos que la aleatoria certeza de recompensas cada epoch. El incentivo del pledge es actualmente un beneficio estadísticamente desapercibido usado solo por grandes inversionistas privados. La ecuación de recompensas actual ha sacrificado recompensas igualitarias justas por un incentivo que no está proveyendo protección sibila como se destinaba. + +## El Efecto Sundaeswap + +El SundaeSwap Initial Stake Offering (ISO) demostró que la participación del delegador de la comunidad puede ser muy móvil. Más de un par de billones en participación se centralizó en grupos de ISO. Después de darse cuenta que la popularidad de su ISO resultó en una centralización de la red, SundaeSwap lanzó un ISO 'Reverse' en beneficio de los grupos individuales. El RISO revirtió temporalmente la tendencia de centralización cuando se delegaron un billón de ADA a pequeños grupos. La red Cardano alcanzó un factor de descentralización de 43.22 en la epoch 321. Después de la RISO, estas ganancias de descentralización se revirtieron porque los incentivos subyacentes de la fórmula de recompensa no han cambiado. Esto demuestra que la comunidad está comprometida y que su participación es móvil, especialmente en cuanto a rendimiento y ganancias. + +## a0: El parámetro del pledge que aumenta rendimiento + +Un diseño intencional de la ecuación de recompensa actual es permitir deliberadamente que las grandes partes interesadas que suplican a los grupos privados obtengan los máximos rendimientos posibles mientras excluyen la delegación de la comunidad. La gran mayoría de los pools con compromiso <10% de saturación de participación tienen un rendimiento asintótico que actualmente se acerca a un rendimiento máximo de 4.25%. Una fracción de compromiso alto en un fondo privado puede obtener hasta el rendimiento máximo disponible del 5,5 %, un 30 % más de rendimiento que los fondos comunitarios de compromiso bajo. + +El término R/(1+a0) garantiza que los fondos comunes pequeños no ganarán la misma fracción de la reserva que los fondos grandes comprometidos. Actualmente, aproximadamente 1.25B₳ obtienen recompensas completas en 19 grupos. Si no se modifican a lo largo del tiempo, las empresas de gestión patrimonial de custodia podrán ofrecer rendimientos sustancialmente más altos que los particulares. Wave Financial es un ejemplo de una empresa que actualmente ofrece este modelo de negocio a los clientes. Eternl/ccvault está introduciendo funciones de firmas múltiples para permitir que muchas personas se comprometan colectivamente con los grupos. Con el tiempo, esta diferencia da como resultado dos clases diferentes de partes interesadas y erosiona el atractivo de auto custodia descentralizado de Cardano. + +## El peligro de “solo incrementa k” + +Obligar al parámetro k a ser radicalmente diferente de la descentralización efectiva, k-efectivo, de la red ha tenido consecuencias no deseadas. Cuando se incrementó k los grupos grandes crearon nuevas pools para retener a los delegadores. Si se aumenta el parámetro k sin actualizar la fórmula de recompensas, los inversionistas más grandes podrán obtener rendimientos completos comprometiéndose con fondos privados, excluyendo la delegación comunitaria. + +Las grandes diferencias entre el parámetro k y el k-efectivo de la red representan un estrés en el estado actual de la red. Más pools bajo el control de un número menor de grupos no mejora la descentralización y de hecho toma más tiempo y recursos para propagar el blockchain a más nodos y relays. Un K-efectivo de >100.0 con un k-parámetro ajustable de ~3.0*k-efectivo es una meta a largo plazo numéricamente justificable. + + + +# Especificación + +## Declaración de Principios + +“Principles matter.” -CH + +1. Todos en la comunidad deberían ser tratados justamente desde pequeños peces delegadores (1-2k₳) a ballenas (>100m₳) y exchanges. +2. Todos en la comunidad deberían tener la misma oportunidad de en promedio ganar el mismo rendimiento y no debería de existir dos clases de inversionistas. +3. Debería de haber una relación causa y efecto muy clara entre (a0,k) parámetros ingresados y la descentralización k-efectivo resultante. +4. El parámetro a0 ingresado debería requerir, no incentivar, a operadores de pools a tener pledge para apoyar los delegadores y protección sibila. +5. La descentralización resultada será cuantificada en términos de descentralización agrupada de producción de bloques, no saturación de stake relativo hacia pools. +6. La implementación debería ser fluida, sencilla, clara, y beneficiosa para todos los inversionistas y operadores. +7.Una ecuación de recompensas nueva debería ser computacionalmente simple y elegante. + +## La Nueva Fórmula Propuesta + +La propuesta ecuación de recompensas retiene la función de k para recompensas limitadas basadas en stake, pero le da un nuevo propósito al parámetro a0 para hacer cumplir recompensas limitadas basadas en la ventaja de pledge. La ecuación balancea equitativamente ambos parámetros de recompensas. En vez de a0 variando de 0.0 a infinito, el parámetro a0 es destinado a variar de 10,000.0 hasta 1.0. Un a0 con valor de 100 requeriría pools a hacer pledge 1% del stake, y un a0 de 1.0 requeriría todas las pools tener 100.0% pledge. + + + +R = ( reserva * rho + cobros )( 1.0 - tau ) + +r( sigma, lambda ) = R * min{ sigma, a0 * lambda, 1/k } + + +La nueva ecuación es computacionalmente simple y no usa logaritmos a propósito, exponentes, o curvas geométricas. En vez de un incentivo basado en costo-beneficios entre recompensas igualitarias y una resiliencia sibila percibida, la nueva ecuación hace cumplir las recompensas igualitarias y resiliencia sibila basada en pledge por igual. Un límite en rendimiento egalitario simple con aplicación de ventaja en pledge para defensa sibila tiene un profundo efecto psicológico: Stakeholders saben que no hay manera de jugar el sistema, ya sea individualmente o colectivamente con gubernatura, y pledge es absolutamente mandatorio. Sin alguna parcialidad artificial, la descentralización de Cardano se fusionaría a la diversidad de la comunidad, servicios, y distribución de stakeholders. Si esta propuesta se adopta eventualmente, cambios en la diversidad de la comunidad, no cambios en la fórmula o parámetros, cambiaría la descentralización. + + +# Razonamiento + +## Reforma de a0 + +El parámetro a0 será redefinido para establecer un pledge máximo antes de limitar recompensas, similar al parámetro k de tamaño de pools. La ventaja de pledge establece un ‘punto de saturación’ diferente por cada pool basado en su pledge. La reforma del parámetro a0 hace cumplir el principio que pledge incrementando es absolutamente requerido para apoyar la delegación de la comunidad en crecimiento. Este cambio alinea el parámetro a0 para proteger la red de comportamientos sibilos. El factor de la ventaja de pledge provee un límite de enforzamiento en actores sibilos y su retorno máximo en capital invertido. Pledge no será un incentivo estadísticamente muy apenas reconocible usado solo por grandes inversionistas privados. El mecanismo preferido para constreñir comportamiento sibilo sería gobernanza de la comunidad para ajustar el factor de ventaja a0. + +El nuevo parámetro a0 va a variar de 1000.0 a 1.0. El valor inicial de la proporción a0 en pledge máximo debería inicialmente ser establecida conservativamente alto en (>=100.0) y opcionalmente disminuida conforme avanza el tiempo a un equilibrio saludable por gobernancia de la comunidad. En (a0=100, k=500) aproximadamente 680k₳ pledge sería requerido para apoyar un pool totalmente saturado. + +## La nueva ecuación de recompensas + +La nueva fórmula propuesta debería ser visualizada en una escala (rendimiento)-lineal vs log(saturación) independiente de k. La Figura abajo demuestra el campo de posibles resultados en varios niveles de pledge y stake extendiéndose más de 3 órdenes de magnitud. El efecto de una reforma de a0 se hace obvia, la saturación de pool será limitado primero por pledge y eventualmente por k. Una característica muy importante de esta relación es que 0₳ pledge resultará siempre en 0₳ recompensas. En a0=100.0 para apoyar un stake pool 100% saturado, 1.0% pledge será siempre requerido. + + + +## La nueva ecuación de recompensas sin el cobro mínimo + + + +## La zona de ecuación de recompensas nueva + + + +## El límite de rendimiento + +La nueva ecuación es diseñada a propósito para que inversionistas de tamaños dramáticamente diferentes puedan todos alcanzar el mismo rendimiento máximo. La característica del límite de rendimiento previene la formación de dos clases de inversionistas y remueve el beneficio económico de la centralización. El límite de rendimiento es la “recompensa igualitaria” descrita pero no implementada por el documento original. + +Con el cobro mínimo <30 ya que un pool crezca a >0.5% de saturación, las recompensas intermitentes van a, en promedio, proveer un rendimiento competitivo para delegadores en >5.0%. En k=500 y a0=100 esto corresponde a un tamaño de pool de 500k₳ con un pledge mínimo de solo 5k₳. El límite de rendimiento también es compatible para una implementación potencial en el futuro del concepto de un pool cónclave colectivo. Por el límite de rendimiento, stake pools colectivos grandes solo proveerán más retornos predecibles, no un rendimiento materialmente más grande, el cual competiría con pools pequeños independientes. + +## Una ventaja de pools pequeños + +Los ganadores de forks de bloques y batallas por slots son determinados por cual pool tiene un puntaje VRF más bajo. Sí operadores de multi-pools se consolidan para mejorar la eficiencia de la red y reducir costos de operación, se les daría una pequeña ventaja a favor de los pools pequeños. Los pools pequeños también tendrán una ligera ventaja ante futuros pools colectivos. Esta ventaja no es bien conocida pero le favorece a pools pequeños. + +## La motivación económica de accionistas grandes y pools colectivos + +La nueva fórmula no disminuirá los rendimientos de las grandes partes interesadas que se comprometan con los fondos privados. Los grandes inversionistas de ADA, como los exchanges, los fondos de liquidez o los contratos inteligentes, no estarían obligados a comprometer la gran mayoría de esas tenencias para obtener rendimientos que actualmente solo se pueden lograr con pools totalmente en pledge. Esta propiedad mejora la liquidez en general. La única motivación económica que queda para los grupos con una gran participación, incluidos los fundadores, las organizaciones fundadoras, los intercambios, el capital de inversión, los fideicomisos y el capital de riesgo, sería asegurar la diversificación y mejorar el valor de toda la red dividiendo la delegación para asegurar diversificación. + +Los grandes inversionistas que pueden dividir su participación en docenas de pools también lograrán una mayor diversificación de recompensas y tolerancia a fallas que la auto operación de una pequeña cantidad de pools privados centralizados ofrecerían. Varias billeteras, incluidas Eternl/ccvault, ofrecen la habilidad de dividir la delegación de participación en muchos grupos. Esta decisión de diseño alinea el interés de las principales partes interesadas con los intereses de toda la comunidad. + +## Propuestas CIP relevantes y borradores + +1. https://cips.cardano.org/cips/cip7/ +2. https://github.com/cardano-foundation/CIPs/pull/163 +3. https://github.com/cardano-foundation/CIPs/pull/229 +4. https://forum.cardano.org/t/cip-leverage-based-saturation-and-pledge-benefit/95632 +5. https://forum.cardano.org/t/cip-change-the-reward-formula/33615 +6. https://forum.cardano.org/t/an-alternative-to-a0-and-k/42784 + +## Métodos y paradigmas para validación de ecuaciones + +Para validar cualquier simulación de ecuación de recompensas, se debe considerar que una entidad pueda escoger delegar a otra entidad, operar una stake pool, u operar varias stake pools. Cualquier nueva ecuación debe ser comparada a la ecuación actual con a0=0.3 y la ecuación actual con minFee=0, a0=0.0. . Un gran número de entidades (>100000) debe simularse para cada ensayo de cada ecuación. Además, durante cada epoch de cada simulación para cada bloque de ecuación, la producción podría mostrarse a partir de una distribución normal. La producción de bloques y las recompensas tienen incertidumbre estadística. + +``` +Cada ecuación: + Cada epoch: + Producción de bloque de muestra (recompensas) por pool de una distribución normal + Cada entidad puede decidir a: + crear/retirar 1 o mas pools + Ajustar la estructura del cobro/margen de (s)us pool(s) + Delegar a la pool de una entidad diferente +``` + +Para cada ecuación en consideración, el promedio (y la variación) del coeficiente de nakamoto, el coeficiente k-efectivo (o un equivalente basado en una entidad/grupo) y un coeficiente de sibila debería ser calculada para cada época hasta la conclusión. El coeficiente sibilo cuantificaria la fracción de stake controlado por todas las entidades operando muti pools, excluyendo negocios regulados como los exchanges. + +# Compatibilidad reversa + +La implementación ocurrirá en dos fases distintas, siendo la primera fase solo cambios de parámetros que no requieren una bifurcación dura. Durante esta primera fase cualquier cambio será reversible. La segunda fase requerirá un hard fork. + +# Camino a Activación + +La implementación de esta propuesta debe ser fluida, escenificada, deliberada y bien comunicada a través de publicidad y educación. Cada cambio en el horario de implementación debe incluir una comunicación clara a la comunidad en expectativas. La educación transparente sobre cómo funcionarán los parámetros y el efecto sobre las recompensas es importante. + +1. Conseguir declaraciones de apoyo de una gran parte de la comunidad de Cardano. + +A pesar de aún no haber entrado a la era Voltaire, aun así deberíamos alcanzar consenso de la comunidad. + +2. Reducir cobro mínimo de 340₳ a 0₳. + +Reduciendo el cobro mínimo obligatorio a 0 permitirá a pools pequeños ser más competitivos mientras se deja a cada pool independiente seleccionar un cobro fijo apropiado. + +3. Esperar 5 - 10 epochs, evaluar descentralización, recaudar comentarios de la comunidad. + +4. Conseguir más declaraciones de apoyo de una gran parte de la comunidad de Cardano. + +5. Reducir k de 500 a aproximadamente 3 veces K-efectivo y disminuir a0 de 0.3 a 0.1. + +Esto mejorará rendimientos para la comunidad de delegadores y permitirá a multi pools tiempo para consolidar pledge, delegación, y retirar pools innecesarios. + +6. Esperar 5 - 10 epochs, evaluar descentralización, recaudar comentarios de la comunidad. + +7. Implementación HARDFORK de la nueva fórmula dando a cumplir retornos disminuyentes de la ventaja de pledge (a0 >= 100, k = 3.0*k-efectivo). + +8. Evaluar descentralización, recaudar comentarios de la comunidad. + +9. Ajustar a0 y k por aproximadamente 5% cada 10 epochs hasta el final de Voltaire. + +10. Después de Voltaire, ajustar a0 y k anualmente/bi-anual por voto de la comunidad. + +# Copyright + +Copyright 2022 Michael Liesenfelt + +Este CIP tiene licencia bajo [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode) +Traducido en Español por: Juan Montano, DOT5 SPO +# Declaración de Conflicto de Interés + +El autor es empleado por tiempo completo como Profesor de Asistente en Investigación de Ingeniería Nuclear en la Universidad de Tennessee, recibe cero ganancias del ecosistema de Cardano, no opera ningún stake pool, y no busca apoyo de delegación de la Fundación de Cardano, tiene 23,000 ADA delegados a THOR stake pool. diff --git a/CIP-0050/README.md b/CIP-0050/README.md new file mode 100644 index 0000000000..da18d3c949 --- /dev/null +++ b/CIP-0050/README.md @@ -0,0 +1,431 @@ +--- +CIP: 50 +Title: Pledge Leverage-Based Staking Rewards +Status: Proposed +Category: Ledger +Authors: + - Michael Liesenfelt +Implementors: N/A +Discussions: + - https://github.com/cardano-foundation/CIPs/pull/242 + - https://forum.cardano.org/t/cip-shelley-s-basho-voltaire-decentralization-update/97685 + - https://forum.cardano.org/t/minimum-pool-fees-with-a-brief-mention-of-k-changes/97002/82 +Created: 2022-04-04 +License: CC-BY-4.0 +--- + +## Abstract + +Improving decentralization is absolutely necessary for the long term health and growth of the Cardano ecosystem. The current reward formula has resulted in a stable but stagnant level of decentralization. With the benefit of hindsight over the last year the intent of $(a0, k)$ has not resulted in the desired decentralization outcome. This CIP provides the justification, methods, metrics, and implementation for an improvement program to increase decentralization of the Cardano network. + +The proposed reward equation retains the function of $k$ for diminishing rewards based on stake and enforces diminishing rewards based on pledge leverage, $L$. The proposed equation enforces a set of principles to ensure stakeholders of dramatically different size can all achieve the same maximum yield. The yield ceiling feature prevents the formation of two classes of stakeholders and removes some of the benefits of centralization. The economic motivations of the largest stakeholders will be aligned with decentralization, reward diversification, fault tolerance, and ensuring the sybil protection of the entire community. + +> **Warning** Conflict of Interest Declaration +> +> The author is employed full time as a Research Assistant Professor in Nuclear Engineering at the University of Tennessee. The author earns no revenue from the Cardano ecosystem, does not operate a stake pool, is not seeking Cardano Foundation stakepool delegation support, is not seeking Catalyst funding support, and owns 25k ADA delegated to the BALNC stake pool ($drliesenfelt). + +## Motivation: why is this CIP necessary? + +Improving decentralization is absolutely necessary for the long term health and growth of the Cardano ecosystem. The current reward formula has resulted in a stable but stagnant level of decentralization. The motivation is to provide the justification, methods, metrics, and implementation schedule for an improvement program to increase decentralization of the Cardano network. + +$K$ and $a0$ are input parameters to the reward formulation designed to promote decentralization. The original intention for parameter $k$ was for it to set a ‘soft-cap’ on a pool’s size and thereby encourage the system to converge toward $k$ pools of equal size delivering equal return per unit of stake for all delegates. In the ideal world this would mean $k$ pools that are roughly equally saturated producing a roughly equal proportion of the blocks [1]. An underlying assumption was that one entity would run only one pool and design discussions about these parameters have described running multiple pools as a form of Sybil attack [2]. + +However, the input parameters have not achieved these goals. Currently there are single entities that run 5,10,20 or even 50 separate pools. It is proposed that the “average resulting decentralization” should be measured based on the stake held by entire entities/groups, rather than a count of individual pools. “K-effective” is hereby used to measure the “average resulting decentralization” and is computed using Equation 1. The Nakamoto Coefficient is approximately half of k-effective rounded up to the nearest integer. K-effective provides a higher resolution quantification of network decentralization compared to the Nakamoto Coefficient. + +The Cardano network currently produces ~21,600 blocks per epoch with ~2400 groups producing between 0 and ~3600 blocks per group. If averaged, approximately 40 equal sized groups would each be creating ~527 blocks per epoch. The historical decentralization of the network shown in Figure 1 has improved from 30.0 in epoch 245 to between 35.0 and 43.0 after epoch 260. This “effective decentralization” or “k-effective” is not even close to the 500 figure targeted by the current k=500 parameter. A partial example of the table used to compute k-effective is shown in Figure 2. + +(1) https://iohk.io/en/blog/posts/2020/11/05/parameters-and-decentralization-the-way-ahead/ + +(2) https://iohk.io/en/blog/posts/2018/10/29/preventing-sybil-attacks/ + +$Ref (1)$ + +

+ +

+ +![Figure 1](images/k-effective.png) +Figure 1. Historical k-effective from epoch 245 to present. + +![Figure 2](images/k-effective-table.png) +Figure 2. K-effective table. + +### The Intent of (a0,k) + +To cite Aggelos Kiayias, Chief Scientist of IOG: + +> “Central to the mechanism’s behavior are two parameters: $k$ and $a0$. The k-parameter caps the rewards of pools to 1/k of the total available. The $a0$ parameter creates a benefit for pledging more stake into a single pool; adding X amount of pledge to a pool increases its rewards additively by up to $a0$*X. This is not to the detriment of other pools; **any rewards left unclaimed due to insufficient pledging will be returned to the Cardano’s reserves and allocated in the future**.” [3] + +> “Paired with the assessment of stake pools performed by the delegates, **this mechanism provides the right set of constraints for the system to converge to a configuration of k equal size pools with the maximum amount of pledge possible**.” [3] + +The analysis of the current reward formula in [4] equated 1 pool to 1 entity. In the real world 1 entity can choose to delegate to another entity, operate one pool, **or operate many pools**. This oversight in the original analysis contributed to the proliferation of multipools in defiance of $k$ parameter increases. + +(3) https://iohk.io/en/blog/posts/2020/11/13/the-general-perspective-on-staking-in-cardano/ + +(4) https://arxiv.org/ftp/arxiv/papers/1807/1807.11218.pdf + +### The Current Reward Formula + +From “4.1 Our RSS construction” of “Reward Sharing Schemes for Stake Pools” [5] the current rewards equation is: + +$ Ref(2) $ +![Equations Set 2](images/equation2.png) + +where: + + + +A natural choice is $β = 1/k$, where $k$ is the target number of pools, and $k,α$ are fixed parameters. + +The following are current protocol parameters: + +$k = 500$ + +$α = a0 = 0.3$ + +The $a0$ parameter represents the fraction of the rewards $(R/(1+a0))$ which are not paid out unless all of the stake is pledged. An $a0$ of 0.3 ensures that **1.0 - 1.0/(1.0+0.3) = 23% of the total rewards R will be withheld from low pledge fraction pools and returned to the reserve**. The effect of this formula is that increased pledge results in retaining more of the available rewards R. However, this benefit is not linear, rather it is drastically biased towards the saturation limit. The $\sigma’ = min\\{σ,β\\}$ term enforces a reward limit based on $k$. Visualizing the resulting field of outcomes at various pledge amounts from 0.00% to 100.0% is necessary. The red dotted line “Max Reward” represents the maximum available yield available at the stated network size. + + + +
If the minimum fee is 30
+
If the minimum fee is 0
+
If a0 is increased to 0.5
+
If a0 is increased to 1.0
+
If a0 is increased to 10.0
+
If a0 is decreased to 0.2
+
If a0 is decreased to 0.1
+
If a0 is decreased to 0.0
+
If a0 is decreased to 0.0 and minFee = 0
+
If minFee is increaesd to 1000
+
If minFee is increaesd to 2000
+ +#### The Reality of (a0,k) + +The intent of parameters $(a0, k)$ has not been realized. The graph of k-effective shows that increasing $k$ from 150 to 500 did not result in a proportional increase to decentralization. The k parameter is currently $500 / 35 = 14.29$ times larger than the effective decentralization k-effective. + +Another important determinant of the ability for small pools to compete with larger pools is the mandatory minimum fee (minFee parameter) which is currently 340₳. This minimum fee is a higher percentage of the total rewards for a small pool compared to a larger pool. It means that delegator yields will not exceed 95% of a saturated pool delegator yields until the pool has at least 15.0% saturation. This is a significant barrier to entry for small pools. + +Billions of ADA is currently staked in pools with nearly 0 pledge and extremely high leverage. Also, a billion ADA is currently pledged in nearly saturated private pools closed to community delegation. There are very few public pools accepting community delegation with pledge amounts between 5M₳ and 60M₳ and the vast majority of public pools have less than 1M₳ pledge. The following bubble chart shows the distribution of stake as a function of group leverage on a log(Stake) vs log(Leverage) scale. The current pledge incentive mechanism only becomes relevant in a small segment of this chart below a leverage of 10 and above a pledge amount of 10M₳. The Single Pool Operator Alliance (SPA) is a collective of ~2200 individual pools and pool operators with a collective stake of 5B₳ at an average leverage factor of only 22. + + + +In the original design, parameter $a0$ represented the influence the operator’s pledge had on the desirability of the pool. In other words, more pledge should mean the pool would be more desirable for stake delegation. However the current reward formula has not produced this effect. See Figure 2. With increasing pledge as a proportion of total stake there is little noticeable effect on rewards until very high pledge percentages. These very high pledge percentages are not attainable except by extremely large stakeholders. Furthermore having such a high pledge percentage would defeat the purpose of community staking since the pool would already be saturated when the maximum pledge benefit is earned. + +The reality of the past 18 months is that pool operators have split pledge across multiple pools because it is more profitable to earn fees (minFee + margin%) than it is to benefit from increasing their pledge to a single pool. The small increase in yield for pools with less than 10M₳ pledge is also much less than the random statistical uncertainty of rewards per epoch. The pledge incentive is currently a statistically unnoticed benefit used only by large private stakeholders. The current reward equation has sacrificed fair egalitarian rewards for an incentive that is not providing Sybil protection as intended. + +### The SundaeSwap Effect + +The SundaeSwap Initial Stake Offering (ISO) proved that community delegator stake can be very mobile. More than a couple billion in stake centralized into ISO groups. After realizing the popularity of their ISO resulted in a centralization of the network SundaeSwap launched a ‘Reverse’ ISO for the benefit of single pools. The RISO temporarily reversed the centralization trend as a billion ADA was delegated to small pools. The Cardano network reached a decentralization factor of 43.22 in epoch 321. After the RISO these decentralization gains reversed because the underlying incentives of the reward formula have not changed. This proves that the community is engaged and their stake is mobile, especially for yield and gains. + +### a0: The pledge yield boosting parameter + +An intentional design of the current reward equation is to purposefully allow large stakeholders pledging to private pools to earn the maximum possible yields while excluding community delegation. The vast majority of pools with pledge <10% stake saturation have an asymptotic yield currently approaching a maximum yield of 4.25%. A high pledge fraction in a private pool can earn up to the maximum available 5.5% yield, 30% more yield than low pledge community pools. + +The $R/(1+a0)$ term guarantees that small pools will not earn the same fraction of the reserve as large pledged pools. Currently, approximately 1.25B₳ is earning full rewards in 19 pools. If left unchanged over time custodial wealth management companies will be able to offer materially higher yields than individuals. Wave financial is an example of a company currently providing this business model to clients. Eternl/ccvalut is introducing multi-signature features to allow many individuals to collectively pledge to pools. Over time this difference results in two different classes of stakeholders and erodes the decentralized self-custodial appeal of Cardano. + +### The danger of ‘just increase k’ + +Forcing the k-parameter to be radically different from the effective decentralization, k-effective, of the network has resulted in unintended consequences. When k was increased large groups created new pools to retain delegators. If the k-parameter is increased without updating the rewards formula, more large stakeholders will be able to earn full yields by pledging to private pools excluding community delegation. + +Large differences between k-parameter and the k-effective of the network represents a stress on the current state of the network. More pools under the control of a smaller number of groups does not improve decentralization and in fact takes more time and resources to propagate the blockchain to more relays and nodes. A k-effective of >100.0 with an adjustable k-parameter informed by and leading k-effective is reasonable long term goal. If the k-effective becomes >100.0, it is likely that the Nakamoto Coefficient will be >50. + +## Specification + +### Statement of Principles + +> _“Principles matter.”_ -CH + +1. Everybody in the community should be treated fairly from tiny starfish delegators (1-2k₳) to massive blue whales (>100M₳) and exchanges. +2. Everybody in the community should have the opportunity to on average earn the same yield and there should not be two classes of stakeholders. +3. There should be a very clear cause and effect relationship between the input parameters and the resulting K-effective decentralization. +4. The equation must require, not incentivize, pool operators to pledge to support community delegation and sybil protection. +5. The decentralization result will be quantified in terms of group decentralization of block production. +6. Implementation should be smooth, easy, clear, and beneficial for all stakeholders and operators. +7. A new reward equation should be computationally simple and elegant. + +### Definitions and Concepts + +**k, k-parameter** + +- The desired number of stake pools for decentralization, which inversely sets a "soft cap" on the stake pools saturation limit (size). The pool size is determined by total circulating supply divided by k number of pools. Pool size is encouraged to converge toward k for optimal staking rewards, in theory. + +**k-effective** + +- The “average resulting decentralization” or "effective decentralization" taking into account groups or entities of stake pools. One group could be running multiple stake pools, which lowers the realistic, effective decentralization. + +**Nakamoto Coefficient, Minimum Attack Vector (MAV)** + +- The minimum number of entities in a given subsystem required to get to 51% of the total capacity, or more simply, how many stake pool groups it would take to gain 51% control of the blockchain. This is a simple yet decisive decentralization measurement. It is not limited to pools, but any attack vector. However, for the scope of this paper it is assumed to be pools only. The Nakamoto Coefficient is approximately half of k-effective rounded up to the nearest integer. + +**Sybil Attack** + +- An attack where the attacker pretends to be an honest pool or pools to gather stake and power in the network. The attacker can create an infinite number of pools in his effort to maximize his own power in the network. + +**Pledge** + +- The amount of stake pledged by a stake pool in ADA. This combats a sybil attack with an economic cost of a "down-payment" or stake pool _pledge_ when creating a new stake pool. + +**Pledge Leverage, L** + +- The ratio between an entity’s pool stake and pledge defined by the parameter L. A leverage-based stake pool saturation is based on pledge rather than a fixed size driven by k-parameter. An entity having high leverage means its total stake is much higher than its pledge. + +**VRF Score** + +- Verifiable Random Function (VRF) score is essentially the lowest random number generated by the stake pools that determines what pool won the slot leader battle to mint a block. The lowest random number VFR score generated by a pool wins the block. + +**Private vs Public Stake Pools** + +- Cardano stake pool operators can be either private, using only their own self-bonded stake, or public, by accepting delegation. A private stake pool retains 100% of the pool’s profits but must also provide 100% of the pool’s staking power. Most stake pool explorers will not give the pool visibility as a staking option because they are already fully saturated. Private stake pool operators optimize rewards by pledging the whole stake cap for their pool. If you have enough ADA to meet the saturation point alone, your rewards will be 100% of the potential earned when adjusted for the a0 parameter. Public stake pools that do not have full pledge must make up their stake from public delegation. + +### The Proposed Reward Formula + +The proposed reward retains the function of $k$ for limiting rewards based on stake and introduces parameter $L$ for enforcing reward limits based on pledge leverage. The equation equally balances both reward parameters. The pledge leverage parameter $L$ is intended to range from 10,000.0 down to 1.0. An $L$ value of 100.0 would require pools to pledge 1.0% of stake and an $L$ of 1.0 would require all pools to be 100.0% pledged. + +

+ +

+ +The new equation is computationally simple and purposefully does not use logarithms, exponents, or geometric curves. Instead of an incentive based tradeoff between egalitarian rewards and a perceived Sybil resilience the new equation enforces both egalitarian rewards and pledge-based Sybil resilience. A simple flat egalitarian yield ceiling with pledge leverage enforcement for Sybil defense has a profound psychological effect: Stakeholders know there is no way to game the system for yield, either individually or collectively with governance, and pledge is absolutely mandatory. Without any engineered bias Cardano decentralization would converge to the diversity of the underlying community, services, and stakeholder distribution. If this proposal is eventually adopted changes in community diversity, not changes in a formula or parameters, would change decentralization. + +## Rationale: how does this CIP achieve its goals? + +### Introduction of L + +The $L$ parameter will establish a maximum pledge leverage before limiting rewards, similar to the k parameter for pool size. Pledge leverage establishes a different ‘saturation point’ for each pool based on its pledge. The $L$ parameter enforces the principle that growing pledge is absolutely required to support growing delegation. This change will directly align the $L$ parameter for protecting the network from Sybil behavior. The pledge leverage factor provides an enforcable limit on sybil actors and their maximum return on invested capital. Pledge will not be a statistically unnoticed slight incentive used only by a handful of large private stakeholders. Community governance to adjust leverage factor $L$ would be the preferred mechanism to constrain sybil behavior. + +The new $L$ parameter will range from 10,000.0 to 1.0. The initial value of the maximum pledge leverage ratio $a0$ should initially be set conservatively high (>=100.0) and optionally decreased slightly over time to a healthy equilibrium by community governance. At $(L=100, k=500)$ approximately 680k₳ pledge would be required to support a fully saturated pool. + +### The new reward equation + +The proposed reward formula should be visualized on a linear(yield) vs log(saturation) scale independent of $k$. The chart below shows the field of possible outcomes for various levels of pledge and stake spanning more than 3 orders of magnitude. The effect of $L$ becomes obvious, pool saturation will be limited first by pledge amount and then eventually by $k$. A very important feature of this relationship is that 0₳ pledge will always result in 0₳ rewards. At $L=100.0$ to support a 100.0% saturated stake pool 1.0% pledge will be required. + + + +### The new reward equation without a minimum fee + + + +### The new reward equation zone + + + +### The yield ceiling + +The new equation is purposefully designed so that stakeholders of dramatically different size can all reach the exact same maximum yield. The yield ceiling feature prevents the formation of two classes of stakeholders and removes the economic benefits of custodial centralization. The yield ceiling is the ‘egalitarian reward’ described but not implemented by the original paper. + +With the minFee < 30 once a pool grows to >0.5% of saturation the intermittent rewards will, on average, provide a competitive yield for delegators at >5.0%. At $k=500$ and $L=100$ this corresponds to a pool size 500k₳ with a minimum pledge of only 5k₳. The yield ceiling is also compatible with a potential future implementation of the Conclave collective stake pool concept. Because of the yield ceiling large collective stake pools will only provide more predictable returns, not a materially larger yield which would compete with smaller independent pools. + +### Leverage-based Pool Ranking Recommendation + +Pool ranking scores in wallet browsers have a significant and powerful game theory impact on delegator pool choices, yet it is often overlooked and not transparent in wallets. + +When pledge becomes the most important factor for total pool size, lower leverage factors are more desirable. Lists should be sorted by leverage and presented in an descending order with the lowest leverage pools first. + +#### Ranking Equation + +The recommended ranking equation starts with the highest score of 10. The pools are down-ranked solely based on leverage, saturation, and fee factors. + + //equation + ranking_score = 10 - max{ leverage_factor, saturation_factor } - fee_factor + + //variables + leverage_factor = 10 * (pool_leverage/L)^A + saturation_factor = 2 * (pool_stake/(saturation_stake * C))^B + fee_factor = D * pool_fee_margin + + //parameters + - A is 2.0, has range (0,10.0), can be tweaked + - B is 5.0, has range (0,10.0), can be tweaked + - C is 0.9, has range (0,2.0), can be tweaked + - D is 50, has range (0-100) ish to be harsh, can be tweaked + - pool_leverage = delegation / pledge + - pool_stake = pledge + delegation + - saturation_stake = total_live_stake/k (e.g. 68M₳ "soft-cap upper limit") + - pool_fee_margin is in range (0-100)% (fixed fee + margin combined) + +To evaluate rank using the current reward scheme: + + //current reward scheme only + ranking_score = 10 - max{ leverage_factor , saturation_factor } - fee_factor - fixed_fee_factor + + //variables + //if fee = minFee, term drops out + //if fee > minFee, term nonzero but loses relevance w/ increased stake + //fixed fee matters less to rewards as stake grows, so too here + fixed_fee_factor = E * (fee-minFee) / stake + + //parameters + - E is 100, has range (0,100_000), can be tweaked + - fee cannot be less than minFee + +#### A Pool's Life-Cycle + +A leverage-based ranking system will create interesting pool free market business dynamics. It's envisioned a pool will undergo "business life-cycles" based on price supply and demand (fees) and leverage (pledge raising to grow the business) as described below. Currently, the yield-based pool ranking creates a market based on fees (driving yield), but not leverage, thus pools can grow indefinitely with no "leverage ranking costs". + +_A Leverage-Based Pool's Life-Cycle_ +1. Start-up: Low pledge, very low leverage, very low fees, very highly ranked. +2. Growth: Gain delegation, leverage grows, rewards gained, high rank. +3. Sustainment: Raise fees, sustainable operation, moderate ranked. +4. Accumulation: Delegator surplus, high leverage, raise fees, high rewards, low rank. +5. Reset: Lower fees, increase pledge, regain low leverage and high rank. Repeat. + +With the need to grow pledge to grow pool size and regain better ranking, the business cycle is cyclical indefinitely until the pool reaches max saturation based on the k-parameter. + +### Oversaturation Attacks (OA) + +An oversaturation attack occurs when a large stakeholder would significantly oversaturate a pool with the intention of pressuring current and future delegators to select a new pool. Limiting pool sizes based on pledge leverage provides a robust sybil enforcement, however lower saturation limits also lowers the cost of an oversaturation attack. The ultimate mitigation is not a formula modification, but instead 2-way at-will delegator acceptance staking which would allow a stake pool operator to exclude or 'veto' select stake keys. This solution has been previously discussed in the community and would benefit from its own CIP. + +### The economic motivations of large stakeholders and collective pools + +The new formula will not decrease the yields of any large stakeholders pledging to private pools. Large ADA stakeholders such as exchanges, liquidity pools, or smart contracts would not be required to pledge a vast majority of those holdings to earn yields currently only achievable with fully pledged pools. This property improves overall liquidity. The large stakeholders who voluntarily choose to divide their stake to dozens of community pools will also achieve more fault tolerance than self-operating a small number of centralized private pools. A number of wallets including Eternl are offering the capability to divide stake delegation between many pools. + +This design decision aligns the interest of the largest stakeholders with the interests of the whole community. The only economic motivation remaining for groups with large stake including founder(s), founding organizations, exchanges, investment capital, trusts, and venture capital would be to enhance the value of the entire network by dividing delegation to secure diversification. Large stakeholders being able to divide stake without penalty to many smaller community pools will have the greatest impact on improving the effective decentralization and Nakamoto Coefficient of Cardano. + +### Relevant prior CIP proposals and drafts + +1. https://cips.cardano.org/cips/cip7/ +2. https://github.com/cardano-foundation/CIPs/pull/163 +3. https://github.com/cardano-foundation/CIPs/pull/229 +4. https://forum.cardano.org/t/cip-leverage-based-saturation-and-pledge-benefit/95632 +5. https://forum.cardano.org/t/cip-change-the-reward-formula/33615 +6. https://forum.cardano.org/t/an-alternative-to-a0-and-k/42784 +7. https://dynamicstrategies.io/crewardcalculator + +### Methods and paradigms for equation validation + +To validate any reward equation simulations must consider that an entity can choose to delegate to another entity, operate one stake pool, or operate many stake pools. Any new equation should be compared to the current equation with $a0=0.3$ and the current equation with minFee=0, $a0=0.0$. A large and increasing number of entities (1k - 1B) should be simulated for each trial of each equation. Additionally, during each epoch of each simulation for each equation block production should be sampled VRF-style from a discrete binomial or skellam distribution. Block production and rewards have statistical uncertainty. + +``` +Each equation: + Each epoch: + sample block production (rewards) per pool + Each entity may choose to: + create/retire 1 or more pools + adjust the fee/margin structure of their pool(s) + delegate to the pool of a different entity +``` + +For each equation in consideration the average (and variation) of the nakamoto coefficient, k-effective coefficient (or an entity/group based equivalent), and a sybil coefficient shall be computed for every epoch until conclusion. The sybil coefficient would quantify the fraction of stake controlled by all entities operating multiple pools excluding regulated businesses such as exchanges. + +### Alternate Equation Forms and Parameter Variations + +Parameter Ranges: +$k = [100 - 2000]$ +$L = [10 - 10000]$ +$a0 = [0.0 - 10.0]$ +$bias = [0.00 - 0.95]$ + +#### Proposed Unbiased Egalitarian Leverage Limiting Equation: + + + + + +#### Current RSS Equation Form: + + + +#### CIP-7 Equation Form + + + +Where equations and independent variables to test are: +- Eq (1) CIP-7 Rewards: Legacy rewards equation with n-root curved pledge benefit +- Eq (2) Repurposed lambda_alt_prime, and legacy sigma_prime +- Eq (3) Lambda_alt: N-root curve pledge benefit +- Eq (4) Crossover: An expression called crossover represents the point where the new curve crosses the line of the original curve, and the benefit in the new and original equations is identical. + - The crossover_factor is a divisor of saturation that calculates the pledge where the curve crosses the line. crossover_factor > 1. +- Eq (5) Curve_root: The n-root curve exponent used in Eq 2 to alter the rewards. 1 = linear, 2 = square root, 3 = cube root, etc. + +And the recommended testing permutations are: + + For crossover in crossover_factor range [10,20,50]: + For n in curved_root range [2,3,4]: + +#### Linearly Biased Variation with a Leverage Limit: + + + +- with $k = 150$, $bias=0.05$, and $L = 50$ +- with $k = 150$, $bias=0.05$, and $L = 100$ +- with $k = 150$, $bias=0.05$, and $L = 1000$ +- with $k = 500$, $bias=0.05$, and $L = 50$ +- with $k = 500$, $bias=0.05$, and $L = 100$ +- with $k = 500$, $bias=0.05$, and $L = 1000$ +- with $k = 1000$, $bias=0.05$, and $L = 50$ +- with $k = 1000$, $bias=0.05$, and $L = 100$ +- with $k = 1000$, $bias=0.05$, and $L = 1000$ + + + +#### Linearly Biased Variation with a Diminishing Leverage Limit: + +(incomplete) + +#### Mahmoud Nimer Ada Link Pool Pledge to Network Pledge Reward Equation + +Mahmoud Nimer's proposed reward equation presented in the [Ada Link's Stakepool Pledge Influence in Stake Rewards Distribution Paper](https://github.com/ADA-Link/Papers/blob/main/Stakepool%20Pledge%20Influence%20in%20Stake%20Rewards%20Distribution.pdf) seeks to compare pool pledge to total network pool pledge, and reward pool pledge growth relative to stake pool size growth. + + + +Where: +* Eq (1) The Nimer Rewards Equation +* Eq (2) s_hat_primt: The pledge saturation equation +* Eq (3) s_hat: Pool pledge / Total Network Pool Pledge + +## Path to Active + +### Acceptance Criteria + +- [ ] The change for the new equation is implemented in the ledger and has been activated through a hard fork. + +### Implementation Plan + +Implementation will occur in two distinct phases with the first phase being only parameter changes requiring no hard fork. During this first phase any changes will be reversible. The second phase will require a hard fork. The implementation of this proposal must be smooth, justified, staged, deliberate, and well communicated through advertising and education. + +Each change in the implementation schedule should include clear communication to the community on expectations. Transparent education on how the parameters will work and the effect on rewards is important. + +1. Get statements of support from a large fraction of the Cardano community. + +Although we haven't entered the Voltaire era yet, we should still reach community concensus. + +2. Reduce minFee from 340₳ to 0₳. + +Reducing the mandatory minimum fee to 0 will allow smaller pools to become more competitive while allowing each individual pool to select an appropriate fixed fee. + +3. Create an open source simulation suite to benchmark all of the possible equation forms and parameter variations. + +4. Competitively evaluate, compare, contrast, and analyze the results of all possible equation forms and parameter variations. + +5. Include the community in selecting the winning equation form and parameter set. + +6. HARDFORK implementation of the new equation and parameter set. + +7. Measure decentralization, gather community feedback. + +8. Slightly adjust parameters by at most approximately 5% every 10 epochs until the end of Voltaire. + +10. After Voltaire adjust parameters annually/bi-annually by community vote. + +### List of Potential Reviewers: + +- Aggelos Kiayias +- Aikaterini-Panagiota Stouka +- Charles Hoskinson +- Christia Ovezik +- Colin Edwards +- Duncan Coutts +- Elias Koutsoupias +- Francisco Landino +- Lars Brünjes +- Mark Stopka +- Philipp Kant +- Shawn McMurdo +- Tobias Francee +- Tom Stafford + +## Copyright + +This CIP is licensed under [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode) + +Copyright 2022 - Michael Liesenfelt diff --git a/CIP-0050/images/a0 0.0 minfee 0.png b/CIP-0050/images/a0 0.0 minfee 0.png new file mode 100644 index 0000000000..a37f8f5697 Binary files /dev/null and b/CIP-0050/images/a0 0.0 minfee 0.png differ diff --git a/CIP-0050/images/a0 0.0 minfee 340.png b/CIP-0050/images/a0 0.0 minfee 340.png new file mode 100644 index 0000000000..56deccb9ba Binary files /dev/null and b/CIP-0050/images/a0 0.0 minfee 340.png differ diff --git a/CIP-0050/images/a0 0.1 minfee 340.png b/CIP-0050/images/a0 0.1 minfee 340.png new file mode 100644 index 0000000000..233fcd3307 Binary files /dev/null and b/CIP-0050/images/a0 0.1 minfee 340.png differ diff --git a/CIP-0050/images/a0 0.2 minfee 340.png b/CIP-0050/images/a0 0.2 minfee 340.png new file mode 100644 index 0000000000..4602fb55a1 Binary files /dev/null and b/CIP-0050/images/a0 0.2 minfee 340.png differ diff --git a/CIP-0050/images/a0 0.3 minfee 0.png b/CIP-0050/images/a0 0.3 minfee 0.png new file mode 100644 index 0000000000..522e1d034a Binary files /dev/null and b/CIP-0050/images/a0 0.3 minfee 0.png differ diff --git a/CIP-0050/images/a0 0.3 minfee 30.png b/CIP-0050/images/a0 0.3 minfee 30.png new file mode 100644 index 0000000000..e2a8504638 Binary files /dev/null and b/CIP-0050/images/a0 0.3 minfee 30.png differ diff --git a/CIP-0050/images/a0 0.3 minfee 340.png b/CIP-0050/images/a0 0.3 minfee 340.png new file mode 100644 index 0000000000..63157fafe0 Binary files /dev/null and b/CIP-0050/images/a0 0.3 minfee 340.png differ diff --git a/CIP-0050/images/a0 0.5 minfee 340.png b/CIP-0050/images/a0 0.5 minfee 340.png new file mode 100644 index 0000000000..c68ab20456 Binary files /dev/null and b/CIP-0050/images/a0 0.5 minfee 340.png differ diff --git a/CIP-0050/images/a0 1.0 minfee 340.png b/CIP-0050/images/a0 1.0 minfee 340.png new file mode 100644 index 0000000000..92ff1baa2d Binary files /dev/null and b/CIP-0050/images/a0 1.0 minfee 340.png differ diff --git a/CIP-0050/images/a0 10.0 minfee 340.png b/CIP-0050/images/a0 10.0 minfee 340.png new file mode 100644 index 0000000000..b6741a020d Binary files /dev/null and b/CIP-0050/images/a0 10.0 minfee 340.png differ diff --git a/CIP-0050/images/a0 100 minfee 0.png b/CIP-0050/images/a0 100 minfee 0.png new file mode 100644 index 0000000000..9599c55333 Binary files /dev/null and b/CIP-0050/images/a0 100 minfee 0.png differ diff --git a/CIP-0050/images/a0 100 minfee 30.png b/CIP-0050/images/a0 100 minfee 30.png new file mode 100644 index 0000000000..a6e20584dc Binary files /dev/null and b/CIP-0050/images/a0 100 minfee 30.png differ diff --git a/CIP-0050/images/chart constant leverage L 100 minfee 0 bias 0.05.png b/CIP-0050/images/chart constant leverage L 100 minfee 0 bias 0.05.png new file mode 100644 index 0000000000..3486e334b1 Binary files /dev/null and b/CIP-0050/images/chart constant leverage L 100 minfee 0 bias 0.05.png differ diff --git a/CIP-0050/images/chart constant leverage L 100 minfee 0 bias 0.10.png b/CIP-0050/images/chart constant leverage L 100 minfee 0 bias 0.10.png new file mode 100644 index 0000000000..c38d0e2529 Binary files /dev/null and b/CIP-0050/images/chart constant leverage L 100 minfee 0 bias 0.10.png differ diff --git a/CIP-0050/images/chart constant leverage L 100 minfee 0 bias 0.50.png b/CIP-0050/images/chart constant leverage L 100 minfee 0 bias 0.50.png new file mode 100644 index 0000000000..da82fcf134 Binary files /dev/null and b/CIP-0050/images/chart constant leverage L 100 minfee 0 bias 0.50.png differ diff --git a/CIP-0050/images/chart constant leverage L 100 minfee 0.png b/CIP-0050/images/chart constant leverage L 100 minfee 0.png new file mode 100644 index 0000000000..6c819dc233 Binary files /dev/null and b/CIP-0050/images/chart constant leverage L 100 minfee 0.png differ diff --git a/CIP-0050/images/chart constant leverage L 100 minfee 30 bias 0.05.png b/CIP-0050/images/chart constant leverage L 100 minfee 30 bias 0.05.png new file mode 100644 index 0000000000..a72dca5407 Binary files /dev/null and b/CIP-0050/images/chart constant leverage L 100 minfee 30 bias 0.05.png differ diff --git a/CIP-0050/images/chart constant leverage L 100 minfee 30 bias 0.10.png b/CIP-0050/images/chart constant leverage L 100 minfee 30 bias 0.10.png new file mode 100644 index 0000000000..2fd0c02f75 Binary files /dev/null and b/CIP-0050/images/chart constant leverage L 100 minfee 30 bias 0.10.png differ diff --git a/CIP-0050/images/chart constant leverage L 100 minfee 30.png b/CIP-0050/images/chart constant leverage L 100 minfee 30.png new file mode 100644 index 0000000000..7c4e7950a0 Binary files /dev/null and b/CIP-0050/images/chart constant leverage L 100 minfee 30.png differ diff --git a/CIP-0050/images/chart current equation a0 0.0 minfee 0.png b/CIP-0050/images/chart current equation a0 0.0 minfee 0.png new file mode 100644 index 0000000000..e3d5bd8570 Binary files /dev/null and b/CIP-0050/images/chart current equation a0 0.0 minfee 0.png differ diff --git a/CIP-0050/images/chart current equation a0 0.0 minfee 340.png b/CIP-0050/images/chart current equation a0 0.0 minfee 340.png new file mode 100644 index 0000000000..35b5cd5cb7 Binary files /dev/null and b/CIP-0050/images/chart current equation a0 0.0 minfee 340.png differ diff --git a/CIP-0050/images/chart current equation a0 0.1 minfee 340.png b/CIP-0050/images/chart current equation a0 0.1 minfee 340.png new file mode 100644 index 0000000000..11872c3b9b Binary files /dev/null and b/CIP-0050/images/chart current equation a0 0.1 minfee 340.png differ diff --git a/CIP-0050/images/chart current equation a0 0.2 minfee 340.png b/CIP-0050/images/chart current equation a0 0.2 minfee 340.png new file mode 100644 index 0000000000..ab15fcb877 Binary files /dev/null and b/CIP-0050/images/chart current equation a0 0.2 minfee 340.png differ diff --git a/CIP-0050/images/chart current equation a0 0.3 minfee 0.png b/CIP-0050/images/chart current equation a0 0.3 minfee 0.png new file mode 100644 index 0000000000..fa2f5703ad Binary files /dev/null and b/CIP-0050/images/chart current equation a0 0.3 minfee 0.png differ diff --git a/CIP-0050/images/chart current equation a0 0.3 minfee 1000.png b/CIP-0050/images/chart current equation a0 0.3 minfee 1000.png new file mode 100644 index 0000000000..c905e97bd3 Binary files /dev/null and b/CIP-0050/images/chart current equation a0 0.3 minfee 1000.png differ diff --git a/CIP-0050/images/chart current equation a0 0.3 minfee 2000.png b/CIP-0050/images/chart current equation a0 0.3 minfee 2000.png new file mode 100644 index 0000000000..cb4bde8120 Binary files /dev/null and b/CIP-0050/images/chart current equation a0 0.3 minfee 2000.png differ diff --git a/CIP-0050/images/chart current equation a0 0.3 minfee 30.png b/CIP-0050/images/chart current equation a0 0.3 minfee 30.png new file mode 100644 index 0000000000..f4b5bfee39 Binary files /dev/null and b/CIP-0050/images/chart current equation a0 0.3 minfee 30.png differ diff --git a/CIP-0050/images/chart current equation a0 0.3 minfee 340.png b/CIP-0050/images/chart current equation a0 0.3 minfee 340.png new file mode 100644 index 0000000000..f1c2bbf4c1 Binary files /dev/null and b/CIP-0050/images/chart current equation a0 0.3 minfee 340.png differ diff --git a/CIP-0050/images/chart current equation a0 0.5 minfee 340.png b/CIP-0050/images/chart current equation a0 0.5 minfee 340.png new file mode 100644 index 0000000000..46d3ce5ca5 Binary files /dev/null and b/CIP-0050/images/chart current equation a0 0.5 minfee 340.png differ diff --git a/CIP-0050/images/chart current equation a0 1.0 minfee 340.png b/CIP-0050/images/chart current equation a0 1.0 minfee 340.png new file mode 100644 index 0000000000..261ccab05e Binary files /dev/null and b/CIP-0050/images/chart current equation a0 1.0 minfee 340.png differ diff --git a/CIP-0050/images/chart current equation a0 10.0 minfee 340.png b/CIP-0050/images/chart current equation a0 10.0 minfee 340.png new file mode 100644 index 0000000000..083153b315 Binary files /dev/null and b/CIP-0050/images/chart current equation a0 10.0 minfee 340.png differ diff --git a/CIP-0050/images/equation1.png b/CIP-0050/images/equation1.png new file mode 100644 index 0000000000..67db2b25ba Binary files /dev/null and b/CIP-0050/images/equation1.png differ diff --git a/CIP-0050/images/equation2-supporting.png b/CIP-0050/images/equation2-supporting.png new file mode 100644 index 0000000000..4189d1c7f5 Binary files /dev/null and b/CIP-0050/images/equation2-supporting.png differ diff --git a/CIP-0050/images/equation2.png b/CIP-0050/images/equation2.png new file mode 100644 index 0000000000..2d3e15eae5 Binary files /dev/null and b/CIP-0050/images/equation2.png differ diff --git a/CIP-0050/images/equation3-newRewardEq.png b/CIP-0050/images/equation3-newRewardEq.png new file mode 100644 index 0000000000..aae911d9df Binary files /dev/null and b/CIP-0050/images/equation3-newRewardEq.png differ diff --git a/CIP-0050/images/equation4-currentEq.png b/CIP-0050/images/equation4-currentEq.png new file mode 100644 index 0000000000..7bcb5fd24a Binary files /dev/null and b/CIP-0050/images/equation4-currentEq.png differ diff --git a/CIP-0050/images/equation4-newRewardsEq.png b/CIP-0050/images/equation4-newRewardsEq.png new file mode 100644 index 0000000000..6c8ef44d97 Binary files /dev/null and b/CIP-0050/images/equation4-newRewardsEq.png differ diff --git a/CIP-0050/images/equation4-newRewardsEqBiased.png b/CIP-0050/images/equation4-newRewardsEqBiased.png new file mode 100644 index 0000000000..dea5550f73 Binary files /dev/null and b/CIP-0050/images/equation4-newRewardsEqBiased.png differ diff --git a/CIP-0050/images/equation5-cip7-currentEq.png b/CIP-0050/images/equation5-cip7-currentEq.png new file mode 100644 index 0000000000..f85e7aa31d Binary files /dev/null and b/CIP-0050/images/equation5-cip7-currentEq.png differ diff --git a/CIP-0050/images/equation8-nimer-adalink.png b/CIP-0050/images/equation8-nimer-adalink.png new file mode 100644 index 0000000000..2385088f08 Binary files /dev/null and b/CIP-0050/images/equation8-nimer-adalink.png differ diff --git a/CIP-0050/images/k-effective-table.png b/CIP-0050/images/k-effective-table.png new file mode 100644 index 0000000000..458770248b Binary files /dev/null and b/CIP-0050/images/k-effective-table.png differ diff --git a/CIP-0050/images/k-effective.png b/CIP-0050/images/k-effective.png new file mode 100644 index 0000000000..ff1ec26205 Binary files /dev/null and b/CIP-0050/images/k-effective.png differ diff --git a/CIP-0050/images/new equation.png b/CIP-0050/images/new equation.png new file mode 100644 index 0000000000..655744151c Binary files /dev/null and b/CIP-0050/images/new equation.png differ diff --git a/CIP-0050/images/stake vs leverage current.png b/CIP-0050/images/stake vs leverage current.png new file mode 100644 index 0000000000..9b39223575 Binary files /dev/null and b/CIP-0050/images/stake vs leverage current.png differ diff --git a/CIP-0050/images/stake vs leverage proposed.png b/CIP-0050/images/stake vs leverage proposed.png new file mode 100644 index 0000000000..bb6f0d2e8e Binary files /dev/null and b/CIP-0050/images/stake vs leverage proposed.png differ diff --git a/CIP-0050/pool-ranking/pool-ranking-analysis.xlsx b/CIP-0050/pool-ranking/pool-ranking-analysis.xlsx new file mode 100644 index 0000000000..29140acad4 Binary files /dev/null and b/CIP-0050/pool-ranking/pool-ranking-analysis.xlsx differ