forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate.py
61 lines (53 loc) · 2.52 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import time
import torch
from ipex_llm import optimize_model
from transformers import AutoTokenizer
from model import MambaLMHeadModel
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Mamba model')
parser.add_argument('--repo-id-or-model-path', type=str, default="state-spaces/mamba-1.4b",
help='The huggingface repo id for the Mamba model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--tokenizer-repo-id-or-path', type=str, default="EleutherAI/gpt-neox-20b",
help='The huggingface repo id for the Mamba tokenizer to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
tokenizer_path = args.tokenizer_repo_id_or_path
# Load model
model = MambaLMHeadModel.from_pretrained(model_path)
# With only one line to enable IPEX-LLM optimization on model
model = optimize_model(model, low_bit='asym_int4', modules_to_not_convert=["dt_proj", "x_proj", "out_proj"])
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
# Generate predicted tokens
with torch.inference_mode():
input_ids = tokenizer.encode(args.prompt, return_tensors="pt")
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0])
print(f'Inference time: {end-st} s')
print('-'*20, 'Output', '-'*20)
print(output_str)