forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchat.py
87 lines (71 loc) · 3.53 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer, LlamaTokenizer
from transformers.generation import GenerationConfig
import torch
import time
import os
import argparse
from ipex_llm import optimize_model
torch.manual_seed(1234)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for Qwen-VL model')
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen-VL-Chat",
help='The huggingface repo id for the Qwen-VL model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict')
current_path = os.path.dirname(os.path.abspath(__file__))
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model
# For successful IPEX-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
device_map="cpu",
trust_remote_code=True,
modules_to_not_convert=['c_fc', 'out_proj'],
torch_dtype=torch.float32
)
# Specify hyperparameters for generation (No need to do this if you are using transformers>=4.32.0)
model.generation_config = GenerationConfig.from_pretrained(model_path, trust_remote_code=True)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Session ID
session_id = 1
while True:
print('-'*20, 'Session %d' % session_id, '-'*20)
image_input = input(f' Please input a picture: ')
if image_input.lower() == 'exit' : # type 'exit' to quit the dialouge
break
text_input = input(f' Please enter the text: ')
if text_input.lower() == 'exit' : # type 'exit' to quit the dialouge
break
if session_id == 1:
history = None
all_input = [{'image': image_input}, {'text': text_input}]
input_list = [_input for _input in all_input if list(_input.values())[0] != '']
if len(input_list) == 0:
print("Input list should not be empty. Please try again with valid input.")
continue
query = tokenizer.from_list_format(input_list)
response, history = model.chat(tokenizer, query = query, history = history)
print('-'*10, 'Response', '-'*10)
print(response, '\n')
image = tokenizer.draw_bbox_on_latest_picture(response, history)
if image is not None:
image.save(os.path.join(current_path, f'Session_{session_id}.png'), )
session_id += 1